Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks

One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2013-11, Vol.43 (6), p.1302-1313
Hauptverfasser: Dawadi, Prafulla N., Cook, Diane J., Schmitter-Edgecombe, Maureen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1313
container_issue 6
container_start_page 1302
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 43
creator Dawadi, Prafulla N.
Cook, Diane J.
Schmitter-Edgecombe, Maureen
description One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine-learning-based method to assess activity quality in smart homes. To validate our approach, we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We compare our automated assessment of task quality with direct observation scores. We also assess the ability of machine-learning techniques to predict the cognitive health of the participants based on these automated scores. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments.
doi_str_mv 10.1109/TSMC.2013.2252338
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_25530925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6582536</ieee_id><sourcerecordid>1671576016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-c7b31596a48a0dd92bb383d0a6f73148d9f7920df18386d25899f9d6a19463f83</originalsourceid><addsrcrecordid>eNqFkVFrFDEUhYNYbGn7A0SQARF82TU3mbmTvAjLoq7QItjtc8hOkm3qzGRNZor-ezPsuta--JSQ-53DuTmEvAQ6B6Dy_frmejlnFPicsYpxLp6RMwYoZoxx9vx4BzwllyndU0qBCeQUX5BTVlWcSladkW-LcQidHqwplmHb-8E_2GJldTvcFYuUbEqd7YfiNvl-W9x0Og7FKnS2uA6ZDXF6DS5Lu11rfxZrnb6nC3LidJvs5eE8J7efPq6Xq9nV189flourWVPVOMyaesOhkqhLoakxkm02XHBDNbqaQymMdLVk1DgQXKBhlZDSSYMaZIncCX5OPux9d-Oms6bJOaNu1S76HPOXCtqrfye9v1Pb8KBKhpJJlg3eHQxi-DHaNKjOp8a2re5tGJMCwRCBo5T_R7GGvBUFzOibJ-h9GGOff0JBWXKcKpso2FNNDClF6465gaqpXzX1qyZYHfrNmtePFz4q_rSZgbcHQKdGty7qvvHpL1cLmUNORq_2nLfWHsdYieyB_Dd-uLUV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443620136</pqid></control><display><type>article</type><title>Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks</title><source>IEEE Electronic Library (IEL)</source><creator>Dawadi, Prafulla N. ; Cook, Diane J. ; Schmitter-Edgecombe, Maureen</creator><creatorcontrib>Dawadi, Prafulla N. ; Cook, Diane J. ; Schmitter-Edgecombe, Maureen</creatorcontrib><description>One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine-learning-based method to assess activity quality in smart homes. To validate our approach, we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We compare our automated assessment of task quality with direct observation scores. We also assess the ability of machine-learning techniques to predict the cognitive health of the participants based on these automated scores. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2013.2252338</identifier><identifier>PMID: 25530925</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Assessments ; Automated ; Biological and medical sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Computerized, statistical medical data processing and models in biomedicine ; Cybernetics ; Dementia ; Exact sciences and technology ; Gerontology ; Health ; Machine learning ; Medical computing and teaching ; Medical sciences ; Monitoring ; Patient monitoring ; Quality assessment ; Sequential analysis ; Smart environments ; Smart homes ; Software ; Tasks ; Tracking ; Ubiquitous computing</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2013-11, Vol.43 (6), p.1302-1313</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-c7b31596a48a0dd92bb383d0a6f73148d9f7920df18386d25899f9d6a19463f83</citedby><cites>FETCH-LOGICAL-c576t-c7b31596a48a0dd92bb383d0a6f73148d9f7920df18386d25899f9d6a19463f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6582536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6582536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27895768$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25530925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawadi, Prafulla N.</creatorcontrib><creatorcontrib>Cook, Diane J.</creatorcontrib><creatorcontrib>Schmitter-Edgecombe, Maureen</creatorcontrib><title>Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><addtitle>IEEE Trans Syst Man Cybern Syst</addtitle><description>One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine-learning-based method to assess activity quality in smart homes. To validate our approach, we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We compare our automated assessment of task quality with direct observation scores. We also assess the ability of machine-learning techniques to predict the cognitive health of the participants based on these automated scores. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Assessments</subject><subject>Automated</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Cybernetics</subject><subject>Dementia</subject><subject>Exact sciences and technology</subject><subject>Gerontology</subject><subject>Health</subject><subject>Machine learning</subject><subject>Medical computing and teaching</subject><subject>Medical sciences</subject><subject>Monitoring</subject><subject>Patient monitoring</subject><subject>Quality assessment</subject><subject>Sequential analysis</subject><subject>Smart environments</subject><subject>Smart homes</subject><subject>Software</subject><subject>Tasks</subject><subject>Tracking</subject><subject>Ubiquitous computing</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkVFrFDEUhYNYbGn7A0SQARF82TU3mbmTvAjLoq7QItjtc8hOkm3qzGRNZor-ezPsuta--JSQ-53DuTmEvAQ6B6Dy_frmejlnFPicsYpxLp6RMwYoZoxx9vx4BzwllyndU0qBCeQUX5BTVlWcSladkW-LcQidHqwplmHb-8E_2GJldTvcFYuUbEqd7YfiNvl-W9x0Og7FKnS2uA6ZDXF6DS5Lu11rfxZrnb6nC3LidJvs5eE8J7efPq6Xq9nV189flourWVPVOMyaesOhkqhLoakxkm02XHBDNbqaQymMdLVk1DgQXKBhlZDSSYMaZIncCX5OPux9d-Oms6bJOaNu1S76HPOXCtqrfye9v1Pb8KBKhpJJlg3eHQxi-DHaNKjOp8a2re5tGJMCwRCBo5T_R7GGvBUFzOibJ-h9GGOff0JBWXKcKpso2FNNDClF6465gaqpXzX1qyZYHfrNmtePFz4q_rSZgbcHQKdGty7qvvHpL1cLmUNORq_2nLfWHsdYieyB_Dd-uLUV</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Dawadi, Prafulla N.</creator><creator>Cook, Diane J.</creator><creator>Schmitter-Edgecombe, Maureen</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks</title><author>Dawadi, Prafulla N. ; Cook, Diane J. ; Schmitter-Edgecombe, Maureen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-c7b31596a48a0dd92bb383d0a6f73148d9f7920df18386d25899f9d6a19463f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Assessments</topic><topic>Automated</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Cybernetics</topic><topic>Dementia</topic><topic>Exact sciences and technology</topic><topic>Gerontology</topic><topic>Health</topic><topic>Machine learning</topic><topic>Medical computing and teaching</topic><topic>Medical sciences</topic><topic>Monitoring</topic><topic>Patient monitoring</topic><topic>Quality assessment</topic><topic>Sequential analysis</topic><topic>Smart environments</topic><topic>Smart homes</topic><topic>Software</topic><topic>Tasks</topic><topic>Tracking</topic><topic>Ubiquitous computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawadi, Prafulla N.</creatorcontrib><creatorcontrib>Cook, Diane J.</creatorcontrib><creatorcontrib>Schmitter-Edgecombe, Maureen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dawadi, Prafulla N.</au><au>Cook, Diane J.</au><au>Schmitter-Edgecombe, Maureen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><addtitle>IEEE Trans Syst Man Cybern Syst</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>43</volume><issue>6</issue><spage>1302</spage><epage>1313</epage><pages>1302-1313</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine-learning-based method to assess activity quality in smart homes. To validate our approach, we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We compare our automated assessment of task quality with direct observation scores. We also assess the ability of machine-learning techniques to predict the cognitive health of the participants based on these automated scores. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>25530925</pmid><doi>10.1109/TSMC.2013.2252338</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2013-11, Vol.43 (6), p.1302-1313
issn 2168-2216
2168-2232
language eng
recordid cdi_pubmed_primary_25530925
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Assessments
Automated
Biological and medical sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Computerized, statistical medical data processing and models in biomedicine
Cybernetics
Dementia
Exact sciences and technology
Gerontology
Health
Machine learning
Medical computing and teaching
Medical sciences
Monitoring
Patient monitoring
Quality assessment
Sequential analysis
Smart environments
Smart homes
Software
Tasks
Tracking
Ubiquitous computing
title Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Cognitive%20Health%20Assessment%20Using%20Smart%20Home%20Monitoring%20of%20Complex%20Tasks&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Dawadi,%20Prafulla%20N.&rft.date=2013-11-01&rft.volume=43&rft.issue=6&rft.spage=1302&rft.epage=1313&rft.pages=1302-1313&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2013.2252338&rft_dat=%3Cproquest_RIE%3E1671576016%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443620136&rft_id=info:pmid/25530925&rft_ieee_id=6582536&rfr_iscdi=true