A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies

Joint modeling of longitudinal measurements and time to event data is often performed by fitting a shared parameter model. Another method for joint modeling that may be used is a marginal model. As a marginal model, we use a Gaussian model for joint modeling of longitudinal measurements and time to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biopharmaceutical statistics 2015-09, Vol.25 (5), p.1077-1099
Hauptverfasser: Ganjali, M., Baghfalaki, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1099
container_issue 5
container_start_page 1077
container_title Journal of biopharmaceutical statistics
container_volume 25
creator Ganjali, M.
Baghfalaki, T.
description Joint modeling of longitudinal measurements and time to event data is often performed by fitting a shared parameter model. Another method for joint modeling that may be used is a marginal model. As a marginal model, we use a Gaussian model for joint modeling of longitudinal measurements and time to event data. We consider a regression model for longitudinal data modeling and a Weibull proportional hazard model for event time data modeling. A Gaussian copula is used to consider the association between these two models. A Monte Carlo expectation-maximization approach is used for parameter estimation. Some simulation studies are conducted in order to illustrate the proposed method. Also, the proposed method is used for analyzing a clinical trial dataset.
doi_str_mv 10.1080/10543406.2014.971584
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25372017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1703699116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-56634a1a1ef3a6e1f50d421897402f23e3cad253e52ebc6582c7eeba795a9cd93</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEohd4A4QssWGTwXcnKzQaChTNiMW068jjnLSuEnuwnV54mb4qTtOyYIG6sn38_ee3j_6ieEfwguAKfyJYcMaxXFBM-KJWRFT8RXFIBMWlUIS8zPuMlBNzUBzFeIUxEarir4sDKpjKMnVY3C_Ryu_HXqPlfh-8NpcoefTDW5fQxrfQW3eBfIfW3l3YNLbW6R5tQMcxwAAuRaRdi7ZjuLbX-ebMDhDReZxUG-8SoJUOvUcnt3swSSfrXbnRt3awvx8O6Mamy8m6t2YuZPfl6Zct2k5mEN8UrzrdR3j7uB4X519Pzlbfy_XPb6er5bo0gqpUCikZ10QT6JiWQDqBW05JVSuOaUcZMKPb_GsQFHZGiooaBbDTqha6Nm3NjouPc988hF8jxNQMNhroe-3Aj7EhSlKS54fpM1CqpMKVqp6BYibrmhCZ0Q__oFd-DHnaDxRnFZd0eiafKRN8jAG6Zh_soMNdQ3AzxaJ5ikUzxaKZY5Fl7x-bj7sB2r-ipxxk4PMMWNf5MOgbH_q2Sfqu96EL2hkbG_Zfiz_Dpsat</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704384629</pqid></control><display><type>article</type><title>A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies</title><source>MEDLINE</source><source>Business Source Complete</source><creator>Ganjali, M. ; Baghfalaki, T.</creator><creatorcontrib>Ganjali, M. ; Baghfalaki, T.</creatorcontrib><description>Joint modeling of longitudinal measurements and time to event data is often performed by fitting a shared parameter model. Another method for joint modeling that may be used is a marginal model. As a marginal model, we use a Gaussian model for joint modeling of longitudinal measurements and time to event data. We consider a regression model for longitudinal data modeling and a Weibull proportional hazard model for event time data modeling. A Gaussian copula is used to consider the association between these two models. A Monte Carlo expectation-maximization approach is used for parameter estimation. Some simulation studies are conducted in order to illustrate the proposed method. Also, the proposed method is used for analyzing a clinical trial dataset.</description><identifier>ISSN: 1054-3406</identifier><identifier>EISSN: 1520-5711</identifier><identifier>DOI: 10.1080/10543406.2014.971584</identifier><identifier>PMID: 25372017</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Acquired Immunodeficiency Syndrome - diagnosis ; Acquired Immunodeficiency Syndrome - epidemiology ; Acquired Immunodeficiency Syndrome - mortality ; Acquired Immunodeficiency Syndrome - therapy ; Algorithms ; Biomedical Research - statistics &amp; numerical data ; Clinical trials ; Computer Simulation ; Copula models ; Data Interpretation, Statistical ; Disease Progression ; Expectation-maximization algorithm ; Fittings ; Gaussian ; HIV Long-Term Survivors - statistics &amp; numerical data ; Humans ; Kaplan-Meier Estimate ; Longitudinal model ; Longitudinal Studies ; Mathematical models ; Measurement ; Models, Statistical ; Monte Carlo Method ; Monte Carlo methods ; Monte Carlo simulation ; Non-ignorability ; Normal distribution ; Numerical Analysis, Computer-Assisted ; Parameter estimation ; Prognosis ; Regression ; Research Design - statistics &amp; numerical data ; Shared parameter model ; Statistics ; Survival ; Time Factors ; Time to event model</subject><ispartof>Journal of biopharmaceutical statistics, 2015-09, Vol.25 (5), p.1077-1099</ispartof><rights>Copyright © Taylor &amp; Francis Group, LLC</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-56634a1a1ef3a6e1f50d421897402f23e3cad253e52ebc6582c7eeba795a9cd93</citedby><cites>FETCH-LOGICAL-c527t-56634a1a1ef3a6e1f50d421897402f23e3cad253e52ebc6582c7eeba795a9cd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25372017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganjali, M.</creatorcontrib><creatorcontrib>Baghfalaki, T.</creatorcontrib><title>A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies</title><title>Journal of biopharmaceutical statistics</title><addtitle>J Biopharm Stat</addtitle><description>Joint modeling of longitudinal measurements and time to event data is often performed by fitting a shared parameter model. Another method for joint modeling that may be used is a marginal model. As a marginal model, we use a Gaussian model for joint modeling of longitudinal measurements and time to event data. We consider a regression model for longitudinal data modeling and a Weibull proportional hazard model for event time data modeling. A Gaussian copula is used to consider the association between these two models. A Monte Carlo expectation-maximization approach is used for parameter estimation. Some simulation studies are conducted in order to illustrate the proposed method. Also, the proposed method is used for analyzing a clinical trial dataset.</description><subject>Acquired Immunodeficiency Syndrome - diagnosis</subject><subject>Acquired Immunodeficiency Syndrome - epidemiology</subject><subject>Acquired Immunodeficiency Syndrome - mortality</subject><subject>Acquired Immunodeficiency Syndrome - therapy</subject><subject>Algorithms</subject><subject>Biomedical Research - statistics &amp; numerical data</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>Copula models</subject><subject>Data Interpretation, Statistical</subject><subject>Disease Progression</subject><subject>Expectation-maximization algorithm</subject><subject>Fittings</subject><subject>Gaussian</subject><subject>HIV Long-Term Survivors - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Kaplan-Meier Estimate</subject><subject>Longitudinal model</subject><subject>Longitudinal Studies</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Non-ignorability</subject><subject>Normal distribution</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Parameter estimation</subject><subject>Prognosis</subject><subject>Regression</subject><subject>Research Design - statistics &amp; numerical data</subject><subject>Shared parameter model</subject><subject>Statistics</subject><subject>Survival</subject><subject>Time Factors</subject><subject>Time to event model</subject><issn>1054-3406</issn><issn>1520-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkstu1DAUhiMEohd4A4QssWGTwXcnKzQaChTNiMW068jjnLSuEnuwnV54mb4qTtOyYIG6sn38_ee3j_6ieEfwguAKfyJYcMaxXFBM-KJWRFT8RXFIBMWlUIS8zPuMlBNzUBzFeIUxEarir4sDKpjKMnVY3C_Ryu_HXqPlfh-8NpcoefTDW5fQxrfQW3eBfIfW3l3YNLbW6R5tQMcxwAAuRaRdi7ZjuLbX-ebMDhDReZxUG-8SoJUOvUcnt3swSSfrXbnRt3awvx8O6Mamy8m6t2YuZPfl6Zct2k5mEN8UrzrdR3j7uB4X519Pzlbfy_XPb6er5bo0gqpUCikZ10QT6JiWQDqBW05JVSuOaUcZMKPb_GsQFHZGiooaBbDTqha6Nm3NjouPc988hF8jxNQMNhroe-3Aj7EhSlKS54fpM1CqpMKVqp6BYibrmhCZ0Q__oFd-DHnaDxRnFZd0eiafKRN8jAG6Zh_soMNdQ3AzxaJ5ikUzxaKZY5Fl7x-bj7sB2r-ipxxk4PMMWNf5MOgbH_q2Sfqu96EL2hkbG_Zfiz_Dpsat</recordid><startdate>20150903</startdate><enddate>20150903</enddate><creator>Ganjali, M.</creator><creator>Baghfalaki, T.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U9</scope><scope>H94</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150903</creationdate><title>A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies</title><author>Ganjali, M. ; Baghfalaki, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-56634a1a1ef3a6e1f50d421897402f23e3cad253e52ebc6582c7eeba795a9cd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acquired Immunodeficiency Syndrome - diagnosis</topic><topic>Acquired Immunodeficiency Syndrome - epidemiology</topic><topic>Acquired Immunodeficiency Syndrome - mortality</topic><topic>Acquired Immunodeficiency Syndrome - therapy</topic><topic>Algorithms</topic><topic>Biomedical Research - statistics &amp; numerical data</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>Copula models</topic><topic>Data Interpretation, Statistical</topic><topic>Disease Progression</topic><topic>Expectation-maximization algorithm</topic><topic>Fittings</topic><topic>Gaussian</topic><topic>HIV Long-Term Survivors - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Kaplan-Meier Estimate</topic><topic>Longitudinal model</topic><topic>Longitudinal Studies</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Non-ignorability</topic><topic>Normal distribution</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Parameter estimation</topic><topic>Prognosis</topic><topic>Regression</topic><topic>Research Design - statistics &amp; numerical data</topic><topic>Shared parameter model</topic><topic>Statistics</topic><topic>Survival</topic><topic>Time Factors</topic><topic>Time to event model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganjali, M.</creatorcontrib><creatorcontrib>Baghfalaki, T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of biopharmaceutical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganjali, M.</au><au>Baghfalaki, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies</atitle><jtitle>Journal of biopharmaceutical statistics</jtitle><addtitle>J Biopharm Stat</addtitle><date>2015-09-03</date><risdate>2015</risdate><volume>25</volume><issue>5</issue><spage>1077</spage><epage>1099</epage><pages>1077-1099</pages><issn>1054-3406</issn><eissn>1520-5711</eissn><abstract>Joint modeling of longitudinal measurements and time to event data is often performed by fitting a shared parameter model. Another method for joint modeling that may be used is a marginal model. As a marginal model, we use a Gaussian model for joint modeling of longitudinal measurements and time to event data. We consider a regression model for longitudinal data modeling and a Weibull proportional hazard model for event time data modeling. A Gaussian copula is used to consider the association between these two models. A Monte Carlo expectation-maximization approach is used for parameter estimation. Some simulation studies are conducted in order to illustrate the proposed method. Also, the proposed method is used for analyzing a clinical trial dataset.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>25372017</pmid><doi>10.1080/10543406.2014.971584</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-3406
ispartof Journal of biopharmaceutical statistics, 2015-09, Vol.25 (5), p.1077-1099
issn 1054-3406
1520-5711
language eng
recordid cdi_pubmed_primary_25372017
source MEDLINE; Business Source Complete
subjects Acquired Immunodeficiency Syndrome - diagnosis
Acquired Immunodeficiency Syndrome - epidemiology
Acquired Immunodeficiency Syndrome - mortality
Acquired Immunodeficiency Syndrome - therapy
Algorithms
Biomedical Research - statistics & numerical data
Clinical trials
Computer Simulation
Copula models
Data Interpretation, Statistical
Disease Progression
Expectation-maximization algorithm
Fittings
Gaussian
HIV Long-Term Survivors - statistics & numerical data
Humans
Kaplan-Meier Estimate
Longitudinal model
Longitudinal Studies
Mathematical models
Measurement
Models, Statistical
Monte Carlo Method
Monte Carlo methods
Monte Carlo simulation
Non-ignorability
Normal distribution
Numerical Analysis, Computer-Assisted
Parameter estimation
Prognosis
Regression
Research Design - statistics & numerical data
Shared parameter model
Statistics
Survival
Time Factors
Time to event model
title A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Copula%20Approach%20to%20Joint%20Modeling%20of%20Longitudinal%20Measurements%20and%20Survival%20Times%20Using%20Monte%20Carlo%20Expectation-Maximization%20with%20Application%20to%20AIDS%20Studies&rft.jtitle=Journal%20of%20biopharmaceutical%20statistics&rft.au=Ganjali,%20M.&rft.date=2015-09-03&rft.volume=25&rft.issue=5&rft.spage=1077&rft.epage=1099&rft.pages=1077-1099&rft.issn=1054-3406&rft.eissn=1520-5711&rft_id=info:doi/10.1080/10543406.2014.971584&rft_dat=%3Cproquest_pubme%3E1703699116%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1704384629&rft_id=info:pmid/25372017&rfr_iscdi=true