A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies

Joint modeling of longitudinal measurements and time to event data is often performed by fitting a shared parameter model. Another method for joint modeling that may be used is a marginal model. As a marginal model, we use a Gaussian model for joint modeling of longitudinal measurements and time to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biopharmaceutical statistics 2015-09, Vol.25 (5), p.1077-1099
Hauptverfasser: Ganjali, M., Baghfalaki, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Joint modeling of longitudinal measurements and time to event data is often performed by fitting a shared parameter model. Another method for joint modeling that may be used is a marginal model. As a marginal model, we use a Gaussian model for joint modeling of longitudinal measurements and time to event data. We consider a regression model for longitudinal data modeling and a Weibull proportional hazard model for event time data modeling. A Gaussian copula is used to consider the association between these two models. A Monte Carlo expectation-maximization approach is used for parameter estimation. Some simulation studies are conducted in order to illustrate the proposed method. Also, the proposed method is used for analyzing a clinical trial dataset.
ISSN:1054-3406
1520-5711
DOI:10.1080/10543406.2014.971584