Neural-Based Adaptive Output-Feedback Control for a Class of Nonstrict-Feedback Stochastic Nonlinear Systems

In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2015-09, Vol.45 (9), p.1977-1987
Hauptverfasser: Wang, Huanqing, Liu, Kefu, Liu, Xiaoping, Chen, Bing, Lin, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1987
container_issue 9
container_start_page 1977
container_title IEEE transactions on cybernetics
container_volume 45
creator Wang, Huanqing
Liu, Kefu
Liu, Xiaoping
Chen, Bing
Lin, Chong
description In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.
doi_str_mv 10.1109/TCYB.2014.2363073
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_25361516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6937163</ieee_id><sourcerecordid>1705734746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-ec7301198d8392292c426db51b318fd165d0e3c1d28ccdb6f890f700c1561b3a3</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEgmnwAAgJ5cilI07apD1CxQBp2g7AgVOVJq4odMtIUqS9PZ02Jnyx5f-zDx8hl8AmAKy4fS3f7yecQTrhQgqmxBEZcZB5wrnKjg-zVGfkIoRPNlQ-rIr8lJzxTEjIQI5IN8fe6y651wEtvbN6HdsfpIs-rvuYTBFtrc0XLd0qetfRxnmqadnpEKhr6NytQvSt-Ue-RGc-dIit2aZdu0Lt6csmRFyGc3LS6C7gxb6Pydv04bV8SmaLx-fybpaYVEJM0CjBAIrc5qLgvOAm5dLWGdQC8saCzCxDYcDy3BhbyyYvWKMYM5DJgdFiTG52f9feffcYYrVsg8Gu0yt0fahAsUyJVKVyQGGHGu9C8NhUa98utd9UwKqt52rrudp6rvaeh5vr_fu-XqI9XPxZHYCrHdAi4iGWhVBDKH4B7uKBJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705734746</pqid></control><display><type>article</type><title>Neural-Based Adaptive Output-Feedback Control for a Class of Nonstrict-Feedback Stochastic Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Huanqing ; Liu, Kefu ; Liu, Xiaoping ; Chen, Bing ; Lin, Chong</creator><creatorcontrib>Wang, Huanqing ; Liu, Kefu ; Liu, Xiaoping ; Chen, Bing ; Lin, Chong</creatorcontrib><description>In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2014.2363073</identifier><identifier>PMID: 25361516</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive neural output-feedback control ; Adaptive systems ; Approximation methods ; Backstepping ; Computer Simulation ; Feedback ; Neural Networks (Computer) ; Nonlinear Dynamics ; Nonlinear systems ; nonstrict-feedback structure ; Observers ; Output feedback ; stochastic nonlinear systems ; Stochastic Processes</subject><ispartof>IEEE transactions on cybernetics, 2015-09, Vol.45 (9), p.1977-1987</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-ec7301198d8392292c426db51b318fd165d0e3c1d28ccdb6f890f700c1561b3a3</citedby><cites>FETCH-LOGICAL-c461t-ec7301198d8392292c426db51b318fd165d0e3c1d28ccdb6f890f700c1561b3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6937163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6937163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25361516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Liu, Kefu</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><creatorcontrib>Lin, Chong</creatorcontrib><title>Neural-Based Adaptive Output-Feedback Control for a Class of Nonstrict-Feedback Stochastic Nonlinear Systems</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.</description><subject>Adaptive neural output-feedback control</subject><subject>Adaptive systems</subject><subject>Approximation methods</subject><subject>Backstepping</subject><subject>Computer Simulation</subject><subject>Feedback</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear systems</subject><subject>nonstrict-feedback structure</subject><subject>Observers</subject><subject>Output feedback</subject><subject>stochastic nonlinear systems</subject><subject>Stochastic Processes</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkMFOwzAMhiMEgmnwAAgJ5cilI07apD1CxQBp2g7AgVOVJq4odMtIUqS9PZ02Jnyx5f-zDx8hl8AmAKy4fS3f7yecQTrhQgqmxBEZcZB5wrnKjg-zVGfkIoRPNlQ-rIr8lJzxTEjIQI5IN8fe6y651wEtvbN6HdsfpIs-rvuYTBFtrc0XLd0qetfRxnmqadnpEKhr6NytQvSt-Ue-RGc-dIit2aZdu0Lt6csmRFyGc3LS6C7gxb6Pydv04bV8SmaLx-fybpaYVEJM0CjBAIrc5qLgvOAm5dLWGdQC8saCzCxDYcDy3BhbyyYvWKMYM5DJgdFiTG52f9feffcYYrVsg8Gu0yt0fahAsUyJVKVyQGGHGu9C8NhUa98utd9UwKqt52rrudp6rvaeh5vr_fu-XqI9XPxZHYCrHdAi4iGWhVBDKH4B7uKBJQ</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Wang, Huanqing</creator><creator>Liu, Kefu</creator><creator>Liu, Xiaoping</creator><creator>Chen, Bing</creator><creator>Lin, Chong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150901</creationdate><title>Neural-Based Adaptive Output-Feedback Control for a Class of Nonstrict-Feedback Stochastic Nonlinear Systems</title><author>Wang, Huanqing ; Liu, Kefu ; Liu, Xiaoping ; Chen, Bing ; Lin, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-ec7301198d8392292c426db51b318fd165d0e3c1d28ccdb6f890f700c1561b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive neural output-feedback control</topic><topic>Adaptive systems</topic><topic>Approximation methods</topic><topic>Backstepping</topic><topic>Computer Simulation</topic><topic>Feedback</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear systems</topic><topic>nonstrict-feedback structure</topic><topic>Observers</topic><topic>Output feedback</topic><topic>stochastic nonlinear systems</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Liu, Kefu</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><creatorcontrib>Lin, Chong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Huanqing</au><au>Liu, Kefu</au><au>Liu, Xiaoping</au><au>Chen, Bing</au><au>Lin, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-Based Adaptive Output-Feedback Control for a Class of Nonstrict-Feedback Stochastic Nonlinear Systems</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>45</volume><issue>9</issue><spage>1977</spage><epage>1987</epage><pages>1977-1987</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25361516</pmid><doi>10.1109/TCYB.2014.2363073</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2015-09, Vol.45 (9), p.1977-1987
issn 2168-2267
2168-2275
language eng
recordid cdi_pubmed_primary_25361516
source IEEE Electronic Library (IEL)
subjects Adaptive neural output-feedback control
Adaptive systems
Approximation methods
Backstepping
Computer Simulation
Feedback
Neural Networks (Computer)
Nonlinear Dynamics
Nonlinear systems
nonstrict-feedback structure
Observers
Output feedback
stochastic nonlinear systems
Stochastic Processes
title Neural-Based Adaptive Output-Feedback Control for a Class of Nonstrict-Feedback Stochastic Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-Based%20Adaptive%20Output-Feedback%20Control%20for%20a%20Class%20of%20Nonstrict-Feedback%20Stochastic%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Wang,%20Huanqing&rft.date=2015-09-01&rft.volume=45&rft.issue=9&rft.spage=1977&rft.epage=1987&rft.pages=1977-1987&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2014.2363073&rft_dat=%3Cproquest_RIE%3E1705734746%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705734746&rft_id=info:pmid/25361516&rft_ieee_id=6937163&rfr_iscdi=true