Large-Scale Nyström Kernel Matrix Approximation Using Randomized SVD
The Nyström method is an efficient technique for the eigenvalue decomposition of large kernel matrices. However, to ensure an accurate approximation, a sufficient number of columns have to be sampled. On very large data sets, the singular value decomposition (SVD) step on the resultant data submatr...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2015-01, Vol.26 (1), p.152-164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 1 |
container_start_page | 152 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 26 |
creator | Mu Li Wei Bi Kwok, James T. Bao-Liang Lu |
description | The Nyström method is an efficient technique for the eigenvalue decomposition of large kernel matrices. However, to ensure an accurate approximation, a sufficient number of columns have to be sampled. On very large data sets, the singular value decomposition (SVD) step on the resultant data submatrix can quickly dominate the computations and become prohibitive. In this paper, we propose an accurate and scalable Nyström scheme that first samples a large column subset from the input matrix, but then only performs an approximate SVD on the inner submatrix using the recent randomized low-rank matrix approximation algorithms. Theoretical analysis shows that the proposed algorithm is as accurate as the standard Nyström method that directly performs a large SVD on the inner submatrix. On the other hand, its time complexity is only as low as performing a small SVD. Encouraging results are obtained on a number of large-scale data sets for low-rank approximation. Moreover, as the most computational expensive steps can be easily distributed and there is minimal data transfer among the processors, significant speedup can be further obtained with the use of multiprocessor and multi-GPU systems. |
doi_str_mv | 10.1109/TNNLS.2014.2359798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_25312945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6918503</ieee_id><sourcerecordid>1669879246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-dc4e2a4c04a5a6fb47540fc326f3f9f3f6d7d4982e3df768c519149a6b5ee7e3</originalsourceid><addsrcrecordid>eNqNkctKA1EMhg-iaNG-gIIMuHEz9dwvy1KvWCvYKu6G05mMTJlLPWcK6oP5Ar6Yp7Z24cpASCBfQpIfoUOCe4RgczYZjYbjHsWE9ygTRhm9hTqUSBpTpvX2JlfPe6jr_QwHk1hIbnbRHhWMUMNFB10MrXuBeJzaEqLRu2_d12cV3YKroYzubOuKt6g_n7vmrahsWzR19OiL-iV6sHXWVMUHZNH46fwA7eS29NBdx300ubyYDK7j4f3VzaA_jFMueBtnKQdqeYq5FVbmU64Ex3nKqMxZboLLTGXcaAosy5XUqSCGcGPlVAAoYPvodDU27PO6AN8mVeFTKEtbQ7PwCZHSaGUol_9AOWbUKEEDevIHnTULV4c7AsV02FxpFSi6olLXeO8gT-YuvMS9JwQnS0WSH0WSpSLJWpHQdLwevZhWkG1afv8fgKMVUADApiwN0QIz9g10Mo6R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638454787</pqid></control><display><type>article</type><title>Large-Scale Nyström Kernel Matrix Approximation Using Randomized SVD</title><source>IEEE Electronic Library (IEL)</source><creator>Mu Li ; Wei Bi ; Kwok, James T. ; Bao-Liang Lu</creator><creatorcontrib>Mu Li ; Wei Bi ; Kwok, James T. ; Bao-Liang Lu</creatorcontrib><description>The Nyström method is an efficient technique for the eigenvalue decomposition of large kernel matrices. However, to ensure an accurate approximation, a sufficient number of columns have to be sampled. On very large data sets, the singular value decomposition (SVD) step on the resultant data submatrix can quickly dominate the computations and become prohibitive. In this paper, we propose an accurate and scalable Nyström scheme that first samples a large column subset from the input matrix, but then only performs an approximate SVD on the inner submatrix using the recent randomized low-rank matrix approximation algorithms. Theoretical analysis shows that the proposed algorithm is as accurate as the standard Nyström method that directly performs a large SVD on the inner submatrix. On the other hand, its time complexity is only as low as performing a small SVD. Encouraging results are obtained on a number of large-scale data sets for low-rank approximation. Moreover, as the most computational expensive steps can be easily distributed and there is minimal data transfer among the processors, significant speedup can be further obtained with the use of multiprocessor and multi-GPU systems.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2014.2359798</identifier><identifier>PMID: 25312945</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Approximation ; Approximation algorithms ; Approximation methods ; Computation ; Decomposition ; Distributed computing ; Eigenvalues ; graphics processor ; Kernel ; Kernels ; large-scale learning ; low-rank matrix approximation ; Mathematical analysis ; Matrix decomposition ; Neural networks ; Nyström method ; randomized SVD ; Time complexity</subject><ispartof>IEEE transaction on neural networks and learning systems, 2015-01, Vol.26 (1), p.152-164</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-dc4e2a4c04a5a6fb47540fc326f3f9f3f6d7d4982e3df768c519149a6b5ee7e3</citedby><cites>FETCH-LOGICAL-c454t-dc4e2a4c04a5a6fb47540fc326f3f9f3f6d7d4982e3df768c519149a6b5ee7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6918503$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6918503$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25312945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mu Li</creatorcontrib><creatorcontrib>Wei Bi</creatorcontrib><creatorcontrib>Kwok, James T.</creatorcontrib><creatorcontrib>Bao-Liang Lu</creatorcontrib><title>Large-Scale Nyström Kernel Matrix Approximation Using Randomized SVD</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>The Nyström method is an efficient technique for the eigenvalue decomposition of large kernel matrices. However, to ensure an accurate approximation, a sufficient number of columns have to be sampled. On very large data sets, the singular value decomposition (SVD) step on the resultant data submatrix can quickly dominate the computations and become prohibitive. In this paper, we propose an accurate and scalable Nyström scheme that first samples a large column subset from the input matrix, but then only performs an approximate SVD on the inner submatrix using the recent randomized low-rank matrix approximation algorithms. Theoretical analysis shows that the proposed algorithm is as accurate as the standard Nyström method that directly performs a large SVD on the inner submatrix. On the other hand, its time complexity is only as low as performing a small SVD. Encouraging results are obtained on a number of large-scale data sets for low-rank approximation. Moreover, as the most computational expensive steps can be easily distributed and there is minimal data transfer among the processors, significant speedup can be further obtained with the use of multiprocessor and multi-GPU systems.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Computation</subject><subject>Decomposition</subject><subject>Distributed computing</subject><subject>Eigenvalues</subject><subject>graphics processor</subject><subject>Kernel</subject><subject>Kernels</subject><subject>large-scale learning</subject><subject>low-rank matrix approximation</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Neural networks</subject><subject>Nyström method</subject><subject>randomized SVD</subject><subject>Time complexity</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkctKA1EMhg-iaNG-gIIMuHEz9dwvy1KvWCvYKu6G05mMTJlLPWcK6oP5Ar6Yp7Z24cpASCBfQpIfoUOCe4RgczYZjYbjHsWE9ygTRhm9hTqUSBpTpvX2JlfPe6jr_QwHk1hIbnbRHhWMUMNFB10MrXuBeJzaEqLRu2_d12cV3YKroYzubOuKt6g_n7vmrahsWzR19OiL-iV6sHXWVMUHZNH46fwA7eS29NBdx300ubyYDK7j4f3VzaA_jFMueBtnKQdqeYq5FVbmU64Ex3nKqMxZboLLTGXcaAosy5XUqSCGcGPlVAAoYPvodDU27PO6AN8mVeFTKEtbQ7PwCZHSaGUol_9AOWbUKEEDevIHnTULV4c7AsV02FxpFSi6olLXeO8gT-YuvMS9JwQnS0WSH0WSpSLJWpHQdLwevZhWkG1afv8fgKMVUADApiwN0QIz9g10Mo6R</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Mu Li</creator><creator>Wei Bi</creator><creator>Kwok, James T.</creator><creator>Bao-Liang Lu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>Large-Scale Nyström Kernel Matrix Approximation Using Randomized SVD</title><author>Mu Li ; Wei Bi ; Kwok, James T. ; Bao-Liang Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-dc4e2a4c04a5a6fb47540fc326f3f9f3f6d7d4982e3df768c519149a6b5ee7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Computation</topic><topic>Decomposition</topic><topic>Distributed computing</topic><topic>Eigenvalues</topic><topic>graphics processor</topic><topic>Kernel</topic><topic>Kernels</topic><topic>large-scale learning</topic><topic>low-rank matrix approximation</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Neural networks</topic><topic>Nyström method</topic><topic>randomized SVD</topic><topic>Time complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Mu Li</creatorcontrib><creatorcontrib>Wei Bi</creatorcontrib><creatorcontrib>Kwok, James T.</creatorcontrib><creatorcontrib>Bao-Liang Lu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu Li</au><au>Wei Bi</au><au>Kwok, James T.</au><au>Bao-Liang Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Nyström Kernel Matrix Approximation Using Randomized SVD</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>26</volume><issue>1</issue><spage>152</spage><epage>164</epage><pages>152-164</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>The Nyström method is an efficient technique for the eigenvalue decomposition of large kernel matrices. However, to ensure an accurate approximation, a sufficient number of columns have to be sampled. On very large data sets, the singular value decomposition (SVD) step on the resultant data submatrix can quickly dominate the computations and become prohibitive. In this paper, we propose an accurate and scalable Nyström scheme that first samples a large column subset from the input matrix, but then only performs an approximate SVD on the inner submatrix using the recent randomized low-rank matrix approximation algorithms. Theoretical analysis shows that the proposed algorithm is as accurate as the standard Nyström method that directly performs a large SVD on the inner submatrix. On the other hand, its time complexity is only as low as performing a small SVD. Encouraging results are obtained on a number of large-scale data sets for low-rank approximation. Moreover, as the most computational expensive steps can be easily distributed and there is minimal data transfer among the processors, significant speedup can be further obtained with the use of multiprocessor and multi-GPU systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25312945</pmid><doi>10.1109/TNNLS.2014.2359798</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2015-01, Vol.26 (1), p.152-164 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_25312945 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Approximation Approximation algorithms Approximation methods Computation Decomposition Distributed computing Eigenvalues graphics processor Kernel Kernels large-scale learning low-rank matrix approximation Mathematical analysis Matrix decomposition Neural networks Nyström method randomized SVD Time complexity |
title | Large-Scale Nyström Kernel Matrix Approximation Using Randomized SVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Nystr%C3%B6m%20Kernel%20Matrix%20Approximation%20Using%20Randomized%20SVD&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Mu%20Li&rft.date=2015-01-01&rft.volume=26&rft.issue=1&rft.spage=152&rft.epage=164&rft.pages=152-164&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2014.2359798&rft_dat=%3Cproquest_RIE%3E1669879246%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638454787&rft_id=info:pmid/25312945&rft_ieee_id=6918503&rfr_iscdi=true |