Metallic nanowire networks: effects of thermal annealing on electrical resistance

Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2014-11, Vol.6 (22), p.13535-13543
Hauptverfasser: Langley, D. P, Lagrange, M, Giusti, G, Jiménez, C, Bréchet, Y, Nguyen, N. D, Bellet, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13543
container_issue 22
container_start_page 13535
container_title Nanoscale
container_volume 6
creator Langley, D. P
Lagrange, M
Giusti, G
Jiménez, C
Bréchet, Y
Nguyen, N. D
Bellet, D
description Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq −1 . Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays. Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications.
doi_str_mv 10.1039/c4nr04151h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25267592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1618154938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-f4b790922c3bce64056bfd4bfb6660f4970c5cc25787a8e6cea4264994931fa53</originalsourceid><addsrcrecordid>eNqN0ktvEzEQAGALUdHScuEOWm5QKeC319yqCAhSoALB2fI648Tg2Km9acW_x-2WcEOcPJr5ZjTSGKGnBL8mmOk3jqeCORFk8wCdUMzxjDFFHx5iyY_R41p_YCw1k-wROqaCSiU0PUFfPsFoYwyuSzblm1CgSzDe5PKzvu3Ae3Bj7bLvxg2UrY2dTQlsDGnd5dRBbOUSXMsXqKGONjk4Q0fexgpP7t9T9P39u2_zxWx5-eHj_GI5c7yn48zzQWmsKXVscCA5FnLwKz74QUqJPdcKO-EcFapXtgfpwHIqudZcM-KtYKeITXNjgDWYXIZgrqnJNkzxPq6NdWYAQ6nsDVFCMNq6Xk1dGxvNroStLb_uehYXS3Obw4RQyoW4Js2-nOyu5Ks91NFsQ3UQo02Q99UQySlVQhH9H5T0RLTV-0bPJ-pKrrWAP6xBsLm9p5nzz1_v7rlo-Pn93P2whdWB_jlgAy8mUKo7VP9-CLNb-Wae_cuw3418rno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1618154938</pqid></control><display><type>article</type><title>Metallic nanowire networks: effects of thermal annealing on electrical resistance</title><source>Royal Society Of Chemistry Journals 2008-</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Langley, D. P ; Lagrange, M ; Giusti, G ; Jiménez, C ; Bréchet, Y ; Nguyen, N. D ; Bellet, D</creator><creatorcontrib>Langley, D. P ; Lagrange, M ; Giusti, G ; Jiménez, C ; Bréchet, Y ; Nguyen, N. D ; Bellet, D</creatorcontrib><description>Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq −1 . Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays. Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 1931-7573</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1039/c4nr04151h</identifier><identifier>PMID: 25267592</identifier><language>eng</language><publisher>England: SpringerOpen</publisher><subject>Annealing ; Budgeting ; Chemical Sciences ; Electrical resistance ; Electrodes ; Material chemistry ; Metallic nanowire network ; Nanowires ; Networks ; Optimization ; Physical, chemical, mathematical &amp; earth Sciences ; Physics ; Physique ; Physique, chimie, mathématiques &amp; sciences de la terre ; Silver nanowire ; Spheroidizing ; Thermal annealing ; Transparent conductive materials</subject><ispartof>Nanoscale, 2014-11, Vol.6 (22), p.13535-13543</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-f4b790922c3bce64056bfd4bfb6660f4970c5cc25787a8e6cea4264994931fa53</citedby><cites>FETCH-LOGICAL-c482t-f4b790922c3bce64056bfd4bfb6660f4970c5cc25787a8e6cea4264994931fa53</cites><orcidid>0000-0002-9136-8585 ; 0000-0002-9929-3696 ; 0000-0002-9601-1825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25267592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01122455$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Langley, D. P</creatorcontrib><creatorcontrib>Lagrange, M</creatorcontrib><creatorcontrib>Giusti, G</creatorcontrib><creatorcontrib>Jiménez, C</creatorcontrib><creatorcontrib>Bréchet, Y</creatorcontrib><creatorcontrib>Nguyen, N. D</creatorcontrib><creatorcontrib>Bellet, D</creatorcontrib><title>Metallic nanowire networks: effects of thermal annealing on electrical resistance</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq −1 . Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays. Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications.</description><subject>Annealing</subject><subject>Budgeting</subject><subject>Chemical Sciences</subject><subject>Electrical resistance</subject><subject>Electrodes</subject><subject>Material chemistry</subject><subject>Metallic nanowire network</subject><subject>Nanowires</subject><subject>Networks</subject><subject>Optimization</subject><subject>Physical, chemical, mathematical &amp; earth Sciences</subject><subject>Physics</subject><subject>Physique</subject><subject>Physique, chimie, mathématiques &amp; sciences de la terre</subject><subject>Silver nanowire</subject><subject>Spheroidizing</subject><subject>Thermal annealing</subject><subject>Transparent conductive materials</subject><issn>2040-3364</issn><issn>1931-7573</issn><issn>2040-3372</issn><issn>2040-3372</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0ktvEzEQAGALUdHScuEOWm5QKeC319yqCAhSoALB2fI648Tg2Km9acW_x-2WcEOcPJr5ZjTSGKGnBL8mmOk3jqeCORFk8wCdUMzxjDFFHx5iyY_R41p_YCw1k-wROqaCSiU0PUFfPsFoYwyuSzblm1CgSzDe5PKzvu3Ae3Bj7bLvxg2UrY2dTQlsDGnd5dRBbOUSXMsXqKGONjk4Q0fexgpP7t9T9P39u2_zxWx5-eHj_GI5c7yn48zzQWmsKXVscCA5FnLwKz74QUqJPdcKO-EcFapXtgfpwHIqudZcM-KtYKeITXNjgDWYXIZgrqnJNkzxPq6NdWYAQ6nsDVFCMNq6Xk1dGxvNroStLb_uehYXS3Obw4RQyoW4Js2-nOyu5Ks91NFsQ3UQo02Q99UQySlVQhH9H5T0RLTV-0bPJ-pKrrWAP6xBsLm9p5nzz1_v7rlo-Pn93P2whdWB_jlgAy8mUKo7VP9-CLNb-Wae_cuw3418rno</recordid><startdate>20141121</startdate><enddate>20141121</enddate><creator>Langley, D. P</creator><creator>Lagrange, M</creator><creator>Giusti, G</creator><creator>Jiménez, C</creator><creator>Bréchet, Y</creator><creator>Nguyen, N. D</creator><creator>Bellet, D</creator><general>SpringerOpen</general><general>RSC Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0002-9136-8585</orcidid><orcidid>https://orcid.org/0000-0002-9929-3696</orcidid><orcidid>https://orcid.org/0000-0002-9601-1825</orcidid></search><sort><creationdate>20141121</creationdate><title>Metallic nanowire networks: effects of thermal annealing on electrical resistance</title><author>Langley, D. P ; Lagrange, M ; Giusti, G ; Jiménez, C ; Bréchet, Y ; Nguyen, N. D ; Bellet, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-f4b790922c3bce64056bfd4bfb6660f4970c5cc25787a8e6cea4264994931fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>Budgeting</topic><topic>Chemical Sciences</topic><topic>Electrical resistance</topic><topic>Electrodes</topic><topic>Material chemistry</topic><topic>Metallic nanowire network</topic><topic>Nanowires</topic><topic>Networks</topic><topic>Optimization</topic><topic>Physical, chemical, mathematical &amp; earth Sciences</topic><topic>Physics</topic><topic>Physique</topic><topic>Physique, chimie, mathématiques &amp; sciences de la terre</topic><topic>Silver nanowire</topic><topic>Spheroidizing</topic><topic>Thermal annealing</topic><topic>Transparent conductive materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langley, D. P</creatorcontrib><creatorcontrib>Lagrange, M</creatorcontrib><creatorcontrib>Giusti, G</creatorcontrib><creatorcontrib>Jiménez, C</creatorcontrib><creatorcontrib>Bréchet, Y</creatorcontrib><creatorcontrib>Nguyen, N. D</creatorcontrib><creatorcontrib>Bellet, D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langley, D. P</au><au>Lagrange, M</au><au>Giusti, G</au><au>Jiménez, C</au><au>Bréchet, Y</au><au>Nguyen, N. D</au><au>Bellet, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallic nanowire networks: effects of thermal annealing on electrical resistance</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2014-11-21</date><risdate>2014</risdate><volume>6</volume><issue>22</issue><spage>13535</spage><epage>13543</epage><pages>13535-13543</pages><issn>2040-3364</issn><issn>1931-7573</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><eissn>1556-276X</eissn><abstract>Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq −1 . Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays. Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications.</abstract><cop>England</cop><pub>SpringerOpen</pub><pmid>25267592</pmid><doi>10.1039/c4nr04151h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9136-8585</orcidid><orcidid>https://orcid.org/0000-0002-9929-3696</orcidid><orcidid>https://orcid.org/0000-0002-9601-1825</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2014-11, Vol.6 (22), p.13535-13543
issn 2040-3364
1931-7573
2040-3372
2040-3372
1556-276X
language eng
recordid cdi_pubmed_primary_25267592
source Royal Society Of Chemistry Journals 2008-; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Annealing
Budgeting
Chemical Sciences
Electrical resistance
Electrodes
Material chemistry
Metallic nanowire network
Nanowires
Networks
Optimization
Physical, chemical, mathematical & earth Sciences
Physics
Physique
Physique, chimie, mathématiques & sciences de la terre
Silver nanowire
Spheroidizing
Thermal annealing
Transparent conductive materials
title Metallic nanowire networks: effects of thermal annealing on electrical resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallic%20nanowire%20networks:%20effects%20of%20thermal%20annealing%20on%20electrical%20resistance&rft.jtitle=Nanoscale&rft.au=Langley,%20D.%20P&rft.date=2014-11-21&rft.volume=6&rft.issue=22&rft.spage=13535&rft.epage=13543&rft.pages=13535-13543&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c4nr04151h&rft_dat=%3Cproquest_pubme%3E1618154938%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1618154938&rft_id=info:pmid/25267592&rfr_iscdi=true