Metallic nanowire networks: effects of thermal annealing on electrical resistance
Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrod...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2014-11, Vol.6 (22), p.13535-13543 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13543 |
---|---|
container_issue | 22 |
container_start_page | 13535 |
container_title | Nanoscale |
container_volume | 6 |
creator | Langley, D. P Lagrange, M Giusti, G Jiménez, C Bréchet, Y Nguyen, N. D Bellet, D |
description | Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq
−1
. Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays.
Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. |
doi_str_mv | 10.1039/c4nr04151h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25267592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1618154938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-f4b790922c3bce64056bfd4bfb6660f4970c5cc25787a8e6cea4264994931fa53</originalsourceid><addsrcrecordid>eNqN0ktvEzEQAGALUdHScuEOWm5QKeC319yqCAhSoALB2fI648Tg2Km9acW_x-2WcEOcPJr5ZjTSGKGnBL8mmOk3jqeCORFk8wCdUMzxjDFFHx5iyY_R41p_YCw1k-wROqaCSiU0PUFfPsFoYwyuSzblm1CgSzDe5PKzvu3Ae3Bj7bLvxg2UrY2dTQlsDGnd5dRBbOUSXMsXqKGONjk4Q0fexgpP7t9T9P39u2_zxWx5-eHj_GI5c7yn48zzQWmsKXVscCA5FnLwKz74QUqJPdcKO-EcFapXtgfpwHIqudZcM-KtYKeITXNjgDWYXIZgrqnJNkzxPq6NdWYAQ6nsDVFCMNq6Xk1dGxvNroStLb_uehYXS3Obw4RQyoW4Js2-nOyu5Ks91NFsQ3UQo02Q99UQySlVQhH9H5T0RLTV-0bPJ-pKrrWAP6xBsLm9p5nzz1_v7rlo-Pn93P2whdWB_jlgAy8mUKo7VP9-CLNb-Wae_cuw3418rno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1618154938</pqid></control><display><type>article</type><title>Metallic nanowire networks: effects of thermal annealing on electrical resistance</title><source>Royal Society Of Chemistry Journals 2008-</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Langley, D. P ; Lagrange, M ; Giusti, G ; Jiménez, C ; Bréchet, Y ; Nguyen, N. D ; Bellet, D</creator><creatorcontrib>Langley, D. P ; Lagrange, M ; Giusti, G ; Jiménez, C ; Bréchet, Y ; Nguyen, N. D ; Bellet, D</creatorcontrib><description>Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq
−1
. Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays.
Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 1931-7573</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1039/c4nr04151h</identifier><identifier>PMID: 25267592</identifier><language>eng</language><publisher>England: SpringerOpen</publisher><subject>Annealing ; Budgeting ; Chemical Sciences ; Electrical resistance ; Electrodes ; Material chemistry ; Metallic nanowire network ; Nanowires ; Networks ; Optimization ; Physical, chemical, mathematical & earth Sciences ; Physics ; Physique ; Physique, chimie, mathématiques & sciences de la terre ; Silver nanowire ; Spheroidizing ; Thermal annealing ; Transparent conductive materials</subject><ispartof>Nanoscale, 2014-11, Vol.6 (22), p.13535-13543</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-f4b790922c3bce64056bfd4bfb6660f4970c5cc25787a8e6cea4264994931fa53</citedby><cites>FETCH-LOGICAL-c482t-f4b790922c3bce64056bfd4bfb6660f4970c5cc25787a8e6cea4264994931fa53</cites><orcidid>0000-0002-9136-8585 ; 0000-0002-9929-3696 ; 0000-0002-9601-1825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25267592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01122455$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Langley, D. P</creatorcontrib><creatorcontrib>Lagrange, M</creatorcontrib><creatorcontrib>Giusti, G</creatorcontrib><creatorcontrib>Jiménez, C</creatorcontrib><creatorcontrib>Bréchet, Y</creatorcontrib><creatorcontrib>Nguyen, N. D</creatorcontrib><creatorcontrib>Bellet, D</creatorcontrib><title>Metallic nanowire networks: effects of thermal annealing on electrical resistance</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq
−1
. Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays.
Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications.</description><subject>Annealing</subject><subject>Budgeting</subject><subject>Chemical Sciences</subject><subject>Electrical resistance</subject><subject>Electrodes</subject><subject>Material chemistry</subject><subject>Metallic nanowire network</subject><subject>Nanowires</subject><subject>Networks</subject><subject>Optimization</subject><subject>Physical, chemical, mathematical & earth Sciences</subject><subject>Physics</subject><subject>Physique</subject><subject>Physique, chimie, mathématiques & sciences de la terre</subject><subject>Silver nanowire</subject><subject>Spheroidizing</subject><subject>Thermal annealing</subject><subject>Transparent conductive materials</subject><issn>2040-3364</issn><issn>1931-7573</issn><issn>2040-3372</issn><issn>2040-3372</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0ktvEzEQAGALUdHScuEOWm5QKeC319yqCAhSoALB2fI648Tg2Km9acW_x-2WcEOcPJr5ZjTSGKGnBL8mmOk3jqeCORFk8wCdUMzxjDFFHx5iyY_R41p_YCw1k-wROqaCSiU0PUFfPsFoYwyuSzblm1CgSzDe5PKzvu3Ae3Bj7bLvxg2UrY2dTQlsDGnd5dRBbOUSXMsXqKGONjk4Q0fexgpP7t9T9P39u2_zxWx5-eHj_GI5c7yn48zzQWmsKXVscCA5FnLwKz74QUqJPdcKO-EcFapXtgfpwHIqudZcM-KtYKeITXNjgDWYXIZgrqnJNkzxPq6NdWYAQ6nsDVFCMNq6Xk1dGxvNroStLb_uehYXS3Obw4RQyoW4Js2-nOyu5Ks91NFsQ3UQo02Q99UQySlVQhH9H5T0RLTV-0bPJ-pKrrWAP6xBsLm9p5nzz1_v7rlo-Pn93P2whdWB_jlgAy8mUKo7VP9-CLNb-Wae_cuw3418rno</recordid><startdate>20141121</startdate><enddate>20141121</enddate><creator>Langley, D. P</creator><creator>Lagrange, M</creator><creator>Giusti, G</creator><creator>Jiménez, C</creator><creator>Bréchet, Y</creator><creator>Nguyen, N. D</creator><creator>Bellet, D</creator><general>SpringerOpen</general><general>RSC Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0002-9136-8585</orcidid><orcidid>https://orcid.org/0000-0002-9929-3696</orcidid><orcidid>https://orcid.org/0000-0002-9601-1825</orcidid></search><sort><creationdate>20141121</creationdate><title>Metallic nanowire networks: effects of thermal annealing on electrical resistance</title><author>Langley, D. P ; Lagrange, M ; Giusti, G ; Jiménez, C ; Bréchet, Y ; Nguyen, N. D ; Bellet, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-f4b790922c3bce64056bfd4bfb6660f4970c5cc25787a8e6cea4264994931fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>Budgeting</topic><topic>Chemical Sciences</topic><topic>Electrical resistance</topic><topic>Electrodes</topic><topic>Material chemistry</topic><topic>Metallic nanowire network</topic><topic>Nanowires</topic><topic>Networks</topic><topic>Optimization</topic><topic>Physical, chemical, mathematical & earth Sciences</topic><topic>Physics</topic><topic>Physique</topic><topic>Physique, chimie, mathématiques & sciences de la terre</topic><topic>Silver nanowire</topic><topic>Spheroidizing</topic><topic>Thermal annealing</topic><topic>Transparent conductive materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langley, D. P</creatorcontrib><creatorcontrib>Lagrange, M</creatorcontrib><creatorcontrib>Giusti, G</creatorcontrib><creatorcontrib>Jiménez, C</creatorcontrib><creatorcontrib>Bréchet, Y</creatorcontrib><creatorcontrib>Nguyen, N. D</creatorcontrib><creatorcontrib>Bellet, D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langley, D. P</au><au>Lagrange, M</au><au>Giusti, G</au><au>Jiménez, C</au><au>Bréchet, Y</au><au>Nguyen, N. D</au><au>Bellet, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallic nanowire networks: effects of thermal annealing on electrical resistance</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2014-11-21</date><risdate>2014</risdate><volume>6</volume><issue>22</issue><spage>13535</spage><epage>13543</epage><pages>13535-13543</pages><issn>2040-3364</issn><issn>1931-7573</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><eissn>1556-276X</eissn><abstract>Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq
−1
. Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays.
Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications.</abstract><cop>England</cop><pub>SpringerOpen</pub><pmid>25267592</pmid><doi>10.1039/c4nr04151h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9136-8585</orcidid><orcidid>https://orcid.org/0000-0002-9929-3696</orcidid><orcidid>https://orcid.org/0000-0002-9601-1825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2014-11, Vol.6 (22), p.13535-13543 |
issn | 2040-3364 1931-7573 2040-3372 2040-3372 1556-276X |
language | eng |
recordid | cdi_pubmed_primary_25267592 |
source | Royal Society Of Chemistry Journals 2008-; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Annealing Budgeting Chemical Sciences Electrical resistance Electrodes Material chemistry Metallic nanowire network Nanowires Networks Optimization Physical, chemical, mathematical & earth Sciences Physics Physique Physique, chimie, mathématiques & sciences de la terre Silver nanowire Spheroidizing Thermal annealing Transparent conductive materials |
title | Metallic nanowire networks: effects of thermal annealing on electrical resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallic%20nanowire%20networks:%20effects%20of%20thermal%20annealing%20on%20electrical%20resistance&rft.jtitle=Nanoscale&rft.au=Langley,%20D.%20P&rft.date=2014-11-21&rft.volume=6&rft.issue=22&rft.spage=13535&rft.epage=13543&rft.pages=13535-13543&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c4nr04151h&rft_dat=%3Cproquest_pubme%3E1618154938%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1618154938&rft_id=info:pmid/25267592&rfr_iscdi=true |