Hemolysis-induced lethality involves inflammasome activation by heme

The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-09, Vol.111 (39), p.E4110-E4118
Hauptverfasser: Dutra, Fabianno F, Alves, Letícia S, Rodrigues, Danielle, Fernandez, Patricia L, de Oliveira, Rosane B, Golenbock, Douglas T, Zamboni, Dario S, Bozza, Marcelo T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E4118
container_issue 39
container_start_page E4110
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Dutra, Fabianno F
Alves, Letícia S
Rodrigues, Danielle
Fernandez, Patricia L
de Oliveira, Rosane B
Golenbock, Douglas T
Zamboni, Dario S
Bozza, Marcelo T
description The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K ⁺ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release. Significance Heme causes inflammation in sterile and infectious conditions, contributing to the pathogenesis of sickle cell disease, malaria, and sepsis, but the mechanisms by which heme operates are not completely understood. Here we show that heme induces IL-1β processing through the activation of the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome in macrophages. Our results suggest that among NLRP3 activators, heme has common as well as unique requirements to trigger inflammasome activation. In vivo, hemolysis and heme cause inflammasome activation. Importantly, macrophages, inflammasome components, and IL-1R contribute to hemolysis-induced lethality. These results highlight the potential of understanding the molecular mechanisms by which heme is sensed by innate immune receptors as a way to identify new therapeutic strategies to treat the pathological consequences of hemolytic diseases.
doi_str_mv 10.1073/pnas.1405023111
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25225402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3454472341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-7fab1ad5c3bf00db2a9da766ecb85a254e565465a9b8aeabf87bb14d039469a43</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhzA0iceGSdsaf8QUJlUKRKnGAnq1J4nRdJfESJyvtv8erXZaPS09jaZ55NJ6XsdcIFwhGXG5GShcoQQEXiPiErRAsllpaeMpWANyUleTyjL1I6QEArKrgOTvjinMlga_Ypxs_xH6XQirD2C6Nb4vez2vqw7wrwriN_dan_Oh6GgZKcfAFNXPY0hziWNS7Yu0H_5I966hP_tWxnrO7z9c_rm7K229fvl59vC0bDXwuTUc1UqsaUXcAbc3JtmS09k1dKcoLeaWV1IpsXZGnuqtMXaNsQVipLUlxzj4cvJulHnzb-HGeqHebKQw07Vyk4P7tjGHt7uPWSbRoKp0F74-CKf5cfJrdEFLj-55GH5fksAIBldZcPI4abrTVKM3jqNIGlOBqb333H_oQl2nMR3Ooc3KgwWCmLg9UM8WUJt-dvojg9rm7fe7uT-554s3flznxv4POQHEE9pMnHaIT1l1LRMjI2wPSUXR0P4Xk7r5zyHsBCmu5Fr8Abmi9Kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609106071</pqid></control><display><type>article</type><title>Hemolysis-induced lethality involves inflammasome activation by heme</title><source>PubMed Central (Open Access)</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dutra, Fabianno F ; Alves, Letícia S ; Rodrigues, Danielle ; Fernandez, Patricia L ; de Oliveira, Rosane B ; Golenbock, Douglas T ; Zamboni, Dario S ; Bozza, Marcelo T</creator><creatorcontrib>Dutra, Fabianno F ; Alves, Letícia S ; Rodrigues, Danielle ; Fernandez, Patricia L ; de Oliveira, Rosane B ; Golenbock, Douglas T ; Zamboni, Dario S ; Bozza, Marcelo T</creatorcontrib><description>The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K ⁺ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release. Significance Heme causes inflammation in sterile and infectious conditions, contributing to the pathogenesis of sickle cell disease, malaria, and sepsis, but the mechanisms by which heme operates are not completely understood. Here we show that heme induces IL-1β processing through the activation of the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome in macrophages. Our results suggest that among NLRP3 activators, heme has common as well as unique requirements to trigger inflammasome activation. In vivo, hemolysis and heme cause inflammasome activation. Importantly, macrophages, inflammasome components, and IL-1R contribute to hemolysis-induced lethality. These results highlight the potential of understanding the molecular mechanisms by which heme is sensed by innate immune receptors as a way to identify new therapeutic strategies to treat the pathological consequences of hemolytic diseases.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1405023111</identifier><identifier>PMID: 25225402</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphatase ; Animals ; Apoptosis ; Biological Sciences ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Caspase 1 - deficiency ; Caspase 1 - genetics ; Caspase 1 - metabolism ; Cells ; Cytotoxicity ; heme ; Heme - chemistry ; Heme - immunology ; Heme - metabolism ; hemolysis ; Hemolysis - immunology ; Hemolysis - physiology ; Humans ; immunologic receptors ; Inflammasomes - immunology ; Inflammasomes - metabolism ; inflammation ; interleukin-1beta ; Interleukin-1beta - metabolism ; leucine ; Macrophage Activation ; macrophages ; Macrophages - immunology ; Macrophages - metabolism ; malaria ; Male ; Membrane Glycoproteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Biological ; NADPH Oxidase 2 ; NADPH Oxidases - metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein ; Oxygen ; Pathogenesis ; PNAS Plus ; Potassium - metabolism ; Protoporphyrins - chemistry ; Protoporphyrins - metabolism ; Reactive Oxygen Species - metabolism ; sepsis (infection) ; sickle cell anemia</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (39), p.E4110-E4118</ispartof><rights>Copyright National Academy of Sciences Sep 30, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-7fab1ad5c3bf00db2a9da766ecb85a254e565465a9b8aeabf87bb14d039469a43</citedby><cites>FETCH-LOGICAL-c602t-7fab1ad5c3bf00db2a9da766ecb85a254e565465a9b8aeabf87bb14d039469a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/39.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191786/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191786/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25225402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutra, Fabianno F</creatorcontrib><creatorcontrib>Alves, Letícia S</creatorcontrib><creatorcontrib>Rodrigues, Danielle</creatorcontrib><creatorcontrib>Fernandez, Patricia L</creatorcontrib><creatorcontrib>de Oliveira, Rosane B</creatorcontrib><creatorcontrib>Golenbock, Douglas T</creatorcontrib><creatorcontrib>Zamboni, Dario S</creatorcontrib><creatorcontrib>Bozza, Marcelo T</creatorcontrib><title>Hemolysis-induced lethality involves inflammasome activation by heme</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K ⁺ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release. Significance Heme causes inflammation in sterile and infectious conditions, contributing to the pathogenesis of sickle cell disease, malaria, and sepsis, but the mechanisms by which heme operates are not completely understood. Here we show that heme induces IL-1β processing through the activation of the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome in macrophages. Our results suggest that among NLRP3 activators, heme has common as well as unique requirements to trigger inflammasome activation. In vivo, hemolysis and heme cause inflammasome activation. Importantly, macrophages, inflammasome components, and IL-1R contribute to hemolysis-induced lethality. These results highlight the potential of understanding the molecular mechanisms by which heme is sensed by innate immune receptors as a way to identify new therapeutic strategies to treat the pathological consequences of hemolytic diseases.</description><subject>Adenosine triphosphatase</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological Sciences</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Caspase 1 - deficiency</subject><subject>Caspase 1 - genetics</subject><subject>Caspase 1 - metabolism</subject><subject>Cells</subject><subject>Cytotoxicity</subject><subject>heme</subject><subject>Heme - chemistry</subject><subject>Heme - immunology</subject><subject>Heme - metabolism</subject><subject>hemolysis</subject><subject>Hemolysis - immunology</subject><subject>Hemolysis - physiology</subject><subject>Humans</subject><subject>immunologic receptors</subject><subject>Inflammasomes - immunology</subject><subject>Inflammasomes - metabolism</subject><subject>inflammation</subject><subject>interleukin-1beta</subject><subject>Interleukin-1beta - metabolism</subject><subject>leucine</subject><subject>Macrophage Activation</subject><subject>macrophages</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>malaria</subject><subject>Male</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Models, Biological</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidases - metabolism</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein</subject><subject>Oxygen</subject><subject>Pathogenesis</subject><subject>PNAS Plus</subject><subject>Potassium - metabolism</subject><subject>Protoporphyrins - chemistry</subject><subject>Protoporphyrins - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>sepsis (infection)</subject><subject>sickle cell anemia</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhzA0iceGSdsaf8QUJlUKRKnGAnq1J4nRdJfESJyvtv8erXZaPS09jaZ55NJ6XsdcIFwhGXG5GShcoQQEXiPiErRAsllpaeMpWANyUleTyjL1I6QEArKrgOTvjinMlga_Ypxs_xH6XQirD2C6Nb4vez2vqw7wrwriN_dan_Oh6GgZKcfAFNXPY0hziWNS7Yu0H_5I966hP_tWxnrO7z9c_rm7K229fvl59vC0bDXwuTUc1UqsaUXcAbc3JtmS09k1dKcoLeaWV1IpsXZGnuqtMXaNsQVipLUlxzj4cvJulHnzb-HGeqHebKQw07Vyk4P7tjGHt7uPWSbRoKp0F74-CKf5cfJrdEFLj-55GH5fksAIBldZcPI4abrTVKM3jqNIGlOBqb333H_oQl2nMR3Ooc3KgwWCmLg9UM8WUJt-dvojg9rm7fe7uT-554s3flznxv4POQHEE9pMnHaIT1l1LRMjI2wPSUXR0P4Xk7r5zyHsBCmu5Fr8Abmi9Kg</recordid><startdate>20140930</startdate><enddate>20140930</enddate><creator>Dutra, Fabianno F</creator><creator>Alves, Letícia S</creator><creator>Rodrigues, Danielle</creator><creator>Fernandez, Patricia L</creator><creator>de Oliveira, Rosane B</creator><creator>Golenbock, Douglas T</creator><creator>Zamboni, Dario S</creator><creator>Bozza, Marcelo T</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140930</creationdate><title>Hemolysis-induced lethality involves inflammasome activation by heme</title><author>Dutra, Fabianno F ; Alves, Letícia S ; Rodrigues, Danielle ; Fernandez, Patricia L ; de Oliveira, Rosane B ; Golenbock, Douglas T ; Zamboni, Dario S ; Bozza, Marcelo T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-7fab1ad5c3bf00db2a9da766ecb85a254e565465a9b8aeabf87bb14d039469a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine triphosphatase</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological Sciences</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Caspase 1 - deficiency</topic><topic>Caspase 1 - genetics</topic><topic>Caspase 1 - metabolism</topic><topic>Cells</topic><topic>Cytotoxicity</topic><topic>heme</topic><topic>Heme - chemistry</topic><topic>Heme - immunology</topic><topic>Heme - metabolism</topic><topic>hemolysis</topic><topic>Hemolysis - immunology</topic><topic>Hemolysis - physiology</topic><topic>Humans</topic><topic>immunologic receptors</topic><topic>Inflammasomes - immunology</topic><topic>Inflammasomes - metabolism</topic><topic>inflammation</topic><topic>interleukin-1beta</topic><topic>Interleukin-1beta - metabolism</topic><topic>leucine</topic><topic>Macrophage Activation</topic><topic>macrophages</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>malaria</topic><topic>Male</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Models, Biological</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidases - metabolism</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein</topic><topic>Oxygen</topic><topic>Pathogenesis</topic><topic>PNAS Plus</topic><topic>Potassium - metabolism</topic><topic>Protoporphyrins - chemistry</topic><topic>Protoporphyrins - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>sepsis (infection)</topic><topic>sickle cell anemia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutra, Fabianno F</creatorcontrib><creatorcontrib>Alves, Letícia S</creatorcontrib><creatorcontrib>Rodrigues, Danielle</creatorcontrib><creatorcontrib>Fernandez, Patricia L</creatorcontrib><creatorcontrib>de Oliveira, Rosane B</creatorcontrib><creatorcontrib>Golenbock, Douglas T</creatorcontrib><creatorcontrib>Zamboni, Dario S</creatorcontrib><creatorcontrib>Bozza, Marcelo T</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutra, Fabianno F</au><au>Alves, Letícia S</au><au>Rodrigues, Danielle</au><au>Fernandez, Patricia L</au><au>de Oliveira, Rosane B</au><au>Golenbock, Douglas T</au><au>Zamboni, Dario S</au><au>Bozza, Marcelo T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hemolysis-induced lethality involves inflammasome activation by heme</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-09-30</date><risdate>2014</risdate><volume>111</volume><issue>39</issue><spage>E4110</spage><epage>E4118</epage><pages>E4110-E4118</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K ⁺ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release. Significance Heme causes inflammation in sterile and infectious conditions, contributing to the pathogenesis of sickle cell disease, malaria, and sepsis, but the mechanisms by which heme operates are not completely understood. Here we show that heme induces IL-1β processing through the activation of the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome in macrophages. Our results suggest that among NLRP3 activators, heme has common as well as unique requirements to trigger inflammasome activation. In vivo, hemolysis and heme cause inflammasome activation. Importantly, macrophages, inflammasome components, and IL-1R contribute to hemolysis-induced lethality. These results highlight the potential of understanding the molecular mechanisms by which heme is sensed by innate immune receptors as a way to identify new therapeutic strategies to treat the pathological consequences of hemolytic diseases.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25225402</pmid><doi>10.1073/pnas.1405023111</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (39), p.E4110-E4118
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_25225402
source PubMed Central (Open Access); Jstor Complete Legacy; MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine triphosphatase
Animals
Apoptosis
Biological Sciences
Carrier Proteins - genetics
Carrier Proteins - metabolism
Caspase 1 - deficiency
Caspase 1 - genetics
Caspase 1 - metabolism
Cells
Cytotoxicity
heme
Heme - chemistry
Heme - immunology
Heme - metabolism
hemolysis
Hemolysis - immunology
Hemolysis - physiology
Humans
immunologic receptors
Inflammasomes - immunology
Inflammasomes - metabolism
inflammation
interleukin-1beta
Interleukin-1beta - metabolism
leucine
Macrophage Activation
macrophages
Macrophages - immunology
Macrophages - metabolism
malaria
Male
Membrane Glycoproteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Models, Biological
NADPH Oxidase 2
NADPH Oxidases - metabolism
NLR Family, Pyrin Domain-Containing 3 Protein
Oxygen
Pathogenesis
PNAS Plus
Potassium - metabolism
Protoporphyrins - chemistry
Protoporphyrins - metabolism
Reactive Oxygen Species - metabolism
sepsis (infection)
sickle cell anemia
title Hemolysis-induced lethality involves inflammasome activation by heme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hemolysis-induced%20lethality%20involves%20inflammasome%20activation%20by%20heme&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dutra,%20Fabianno%20F&rft.date=2014-09-30&rft.volume=111&rft.issue=39&rft.spage=E4110&rft.epage=E4118&rft.pages=E4110-E4118&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1405023111&rft_dat=%3Cproquest_pubme%3E3454472341%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609106071&rft_id=info:pmid/25225402&rfr_iscdi=true