Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission
In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the con...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2014-10, Vol.26 (39), p.395008-395008 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 395008 |
---|---|
container_issue | 39 |
container_start_page | 395008 |
container_title | Journal of physics. Condensed matter |
container_volume | 26 |
creator | O'Donnell, Kane M Edmonds, Mark T Ristein, Jürgen Rietwyk, Kevin J Tadich, Anton Thomsen, Lars Pakes, Christopher I Ley, Lothar |
description | In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission. |
doi_str_mv | 10.1088/0953-8984/26/39/395008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25192212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685787921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f4879fb360852d0002bd44e3e1277ee2630eae68d4fbd6cfc8dbc546adbb7f0b3</originalsourceid><addsrcrecordid>eNqFkdtq3DAQhkVISLZJXmHRXXLjrk6W5dyVpCcI9CaB3AkdRqyDbbmSXejbV2bThUIhIJhh-P6Z0fwIbSn5SIlSO9LWvFKtEjsmd7wtryZEnaAN5ZJWUqiXU7Q5QhfoQ86vhBChuDhHF6ymLWOUbVB66BK4GUebIf0ycxdHHAOe9nEsGQxdzmsppDjgfZwx9IVOccx3OE9ranocwMxLgoy7EfvODHH0OIMrwaTfR8Wx2RU6C6bPcP0WL9Hzl89P99-qxx9fv99_eqycoO1cBaGaNlguiaqZL7sz64UADpQ1DQCTnIABqbwI1ksXnPLW1UIab20TiOWX6PbQd0rx5wJ51mUBB31vRohL1lSquikzGH0frSVtGy7qpqDygLoUc04Q9JS6oXxUU6JXa_R6db1eXTOpeasP1hTh9m3GYgfwR9lfLwrADkAXJ_0alzSW67zf9eY_Ijf8Q-nJB_4HlXyoeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561973457</pqid></control><display><type>article</type><title>Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>O'Donnell, Kane M ; Edmonds, Mark T ; Ristein, Jürgen ; Rietwyk, Kevin J ; Tadich, Anton ; Thomsen, Lars ; Pakes, Christopher I ; Ley, Lothar</creator><creatorcontrib>O'Donnell, Kane M ; Edmonds, Mark T ; Ristein, Jürgen ; Rietwyk, Kevin J ; Tadich, Anton ; Thomsen, Lars ; Pakes, Christopher I ; Ley, Lothar</creatorcontrib><description>In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/26/39/395008</identifier><identifier>PMID: 25192212</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Carriers ; Conduction band ; Diamonds ; Electron emission ; Emission ; hot electrons ; Kinetic energy ; negative electron affinity ; Phonons ; photoelectron spectroscopy ; Spectral emissivity</subject><ispartof>Journal of physics. Condensed matter, 2014-10, Vol.26 (39), p.395008-395008</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f4879fb360852d0002bd44e3e1277ee2630eae68d4fbd6cfc8dbc546adbb7f0b3</citedby><cites>FETCH-LOGICAL-c419t-f4879fb360852d0002bd44e3e1277ee2630eae68d4fbd6cfc8dbc546adbb7f0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/26/39/395008/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25192212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Donnell, Kane M</creatorcontrib><creatorcontrib>Edmonds, Mark T</creatorcontrib><creatorcontrib>Ristein, Jürgen</creatorcontrib><creatorcontrib>Rietwyk, Kevin J</creatorcontrib><creatorcontrib>Tadich, Anton</creatorcontrib><creatorcontrib>Thomsen, Lars</creatorcontrib><creatorcontrib>Pakes, Christopher I</creatorcontrib><creatorcontrib>Ley, Lothar</creatorcontrib><title>Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.</description><subject>Carriers</subject><subject>Conduction band</subject><subject>Diamonds</subject><subject>Electron emission</subject><subject>Emission</subject><subject>hot electrons</subject><subject>Kinetic energy</subject><subject>negative electron affinity</subject><subject>Phonons</subject><subject>photoelectron spectroscopy</subject><subject>Spectral emissivity</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkdtq3DAQhkVISLZJXmHRXXLjrk6W5dyVpCcI9CaB3AkdRqyDbbmSXejbV2bThUIhIJhh-P6Z0fwIbSn5SIlSO9LWvFKtEjsmd7wtryZEnaAN5ZJWUqiXU7Q5QhfoQ86vhBChuDhHF6ymLWOUbVB66BK4GUebIf0ycxdHHAOe9nEsGQxdzmsppDjgfZwx9IVOccx3OE9ranocwMxLgoy7EfvODHH0OIMrwaTfR8Wx2RU6C6bPcP0WL9Hzl89P99-qxx9fv99_eqycoO1cBaGaNlguiaqZL7sz64UADpQ1DQCTnIABqbwI1ksXnPLW1UIab20TiOWX6PbQd0rx5wJ51mUBB31vRohL1lSquikzGH0frSVtGy7qpqDygLoUc04Q9JS6oXxUU6JXa_R6db1eXTOpeasP1hTh9m3GYgfwR9lfLwrADkAXJ_0alzSW67zf9eY_Ijf8Q-nJB_4HlXyoeA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>O'Donnell, Kane M</creator><creator>Edmonds, Mark T</creator><creator>Ristein, Jürgen</creator><creator>Rietwyk, Kevin J</creator><creator>Tadich, Anton</creator><creator>Thomsen, Lars</creator><creator>Pakes, Christopher I</creator><creator>Ley, Lothar</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20141001</creationdate><title>Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission</title><author>O'Donnell, Kane M ; Edmonds, Mark T ; Ristein, Jürgen ; Rietwyk, Kevin J ; Tadich, Anton ; Thomsen, Lars ; Pakes, Christopher I ; Ley, Lothar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f4879fb360852d0002bd44e3e1277ee2630eae68d4fbd6cfc8dbc546adbb7f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carriers</topic><topic>Conduction band</topic><topic>Diamonds</topic><topic>Electron emission</topic><topic>Emission</topic><topic>hot electrons</topic><topic>Kinetic energy</topic><topic>negative electron affinity</topic><topic>Phonons</topic><topic>photoelectron spectroscopy</topic><topic>Spectral emissivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Donnell, Kane M</creatorcontrib><creatorcontrib>Edmonds, Mark T</creatorcontrib><creatorcontrib>Ristein, Jürgen</creatorcontrib><creatorcontrib>Rietwyk, Kevin J</creatorcontrib><creatorcontrib>Tadich, Anton</creatorcontrib><creatorcontrib>Thomsen, Lars</creatorcontrib><creatorcontrib>Pakes, Christopher I</creatorcontrib><creatorcontrib>Ley, Lothar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Donnell, Kane M</au><au>Edmonds, Mark T</au><au>Ristein, Jürgen</au><au>Rietwyk, Kevin J</au><au>Tadich, Anton</au><au>Thomsen, Lars</au><au>Pakes, Christopher I</au><au>Ley, Lothar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>26</volume><issue>39</issue><spage>395008</spage><epage>395008</epage><pages>395008-395008</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25192212</pmid><doi>10.1088/0953-8984/26/39/395008</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2014-10, Vol.26 (39), p.395008-395008 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_pubmed_primary_25192212 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Carriers Conduction band Diamonds Electron emission Emission hot electrons Kinetic energy negative electron affinity Phonons photoelectron spectroscopy Spectral emissivity |
title | Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20of%20phonon%20emission%20from%20hot%20electrons:%20spectral%20features%20in%20diamond%20secondary%20electron%20emission&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=O'Donnell,%20Kane%20M&rft.date=2014-10-01&rft.volume=26&rft.issue=39&rft.spage=395008&rft.epage=395008&rft.pages=395008-395008&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/26/39/395008&rft_dat=%3Cproquest_pubme%3E1685787921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561973457&rft_id=info:pmid/25192212&rfr_iscdi=true |