Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission

In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2014-10, Vol.26 (39), p.395008-395008
Hauptverfasser: O'Donnell, Kane M, Edmonds, Mark T, Ristein, Jürgen, Rietwyk, Kevin J, Tadich, Anton, Thomsen, Lars, Pakes, Christopher I, Ley, Lothar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395008
container_issue 39
container_start_page 395008
container_title Journal of physics. Condensed matter
container_volume 26
creator O'Donnell, Kane M
Edmonds, Mark T
Ristein, Jürgen
Rietwyk, Kevin J
Tadich, Anton
Thomsen, Lars
Pakes, Christopher I
Ley, Lothar
description In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.
doi_str_mv 10.1088/0953-8984/26/39/395008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25192212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685787921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f4879fb360852d0002bd44e3e1277ee2630eae68d4fbd6cfc8dbc546adbb7f0b3</originalsourceid><addsrcrecordid>eNqFkdtq3DAQhkVISLZJXmHRXXLjrk6W5dyVpCcI9CaB3AkdRqyDbbmSXejbV2bThUIhIJhh-P6Z0fwIbSn5SIlSO9LWvFKtEjsmd7wtryZEnaAN5ZJWUqiXU7Q5QhfoQ86vhBChuDhHF6ymLWOUbVB66BK4GUebIf0ycxdHHAOe9nEsGQxdzmsppDjgfZwx9IVOccx3OE9ranocwMxLgoy7EfvODHH0OIMrwaTfR8Wx2RU6C6bPcP0WL9Hzl89P99-qxx9fv99_eqycoO1cBaGaNlguiaqZL7sz64UADpQ1DQCTnIABqbwI1ksXnPLW1UIab20TiOWX6PbQd0rx5wJ51mUBB31vRohL1lSquikzGH0frSVtGy7qpqDygLoUc04Q9JS6oXxUU6JXa_R6db1eXTOpeasP1hTh9m3GYgfwR9lfLwrADkAXJ_0alzSW67zf9eY_Ijf8Q-nJB_4HlXyoeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561973457</pqid></control><display><type>article</type><title>Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>O'Donnell, Kane M ; Edmonds, Mark T ; Ristein, Jürgen ; Rietwyk, Kevin J ; Tadich, Anton ; Thomsen, Lars ; Pakes, Christopher I ; Ley, Lothar</creator><creatorcontrib>O'Donnell, Kane M ; Edmonds, Mark T ; Ristein, Jürgen ; Rietwyk, Kevin J ; Tadich, Anton ; Thomsen, Lars ; Pakes, Christopher I ; Ley, Lothar</creatorcontrib><description>In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/26/39/395008</identifier><identifier>PMID: 25192212</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Carriers ; Conduction band ; Diamonds ; Electron emission ; Emission ; hot electrons ; Kinetic energy ; negative electron affinity ; Phonons ; photoelectron spectroscopy ; Spectral emissivity</subject><ispartof>Journal of physics. Condensed matter, 2014-10, Vol.26 (39), p.395008-395008</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f4879fb360852d0002bd44e3e1277ee2630eae68d4fbd6cfc8dbc546adbb7f0b3</citedby><cites>FETCH-LOGICAL-c419t-f4879fb360852d0002bd44e3e1277ee2630eae68d4fbd6cfc8dbc546adbb7f0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/26/39/395008/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25192212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Donnell, Kane M</creatorcontrib><creatorcontrib>Edmonds, Mark T</creatorcontrib><creatorcontrib>Ristein, Jürgen</creatorcontrib><creatorcontrib>Rietwyk, Kevin J</creatorcontrib><creatorcontrib>Tadich, Anton</creatorcontrib><creatorcontrib>Thomsen, Lars</creatorcontrib><creatorcontrib>Pakes, Christopher I</creatorcontrib><creatorcontrib>Ley, Lothar</creatorcontrib><title>Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.</description><subject>Carriers</subject><subject>Conduction band</subject><subject>Diamonds</subject><subject>Electron emission</subject><subject>Emission</subject><subject>hot electrons</subject><subject>Kinetic energy</subject><subject>negative electron affinity</subject><subject>Phonons</subject><subject>photoelectron spectroscopy</subject><subject>Spectral emissivity</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkdtq3DAQhkVISLZJXmHRXXLjrk6W5dyVpCcI9CaB3AkdRqyDbbmSXejbV2bThUIhIJhh-P6Z0fwIbSn5SIlSO9LWvFKtEjsmd7wtryZEnaAN5ZJWUqiXU7Q5QhfoQ86vhBChuDhHF6ymLWOUbVB66BK4GUebIf0ycxdHHAOe9nEsGQxdzmsppDjgfZwx9IVOccx3OE9ranocwMxLgoy7EfvODHH0OIMrwaTfR8Wx2RU6C6bPcP0WL9Hzl89P99-qxx9fv99_eqycoO1cBaGaNlguiaqZL7sz64UADpQ1DQCTnIABqbwI1ksXnPLW1UIab20TiOWX6PbQd0rx5wJ51mUBB31vRohL1lSquikzGH0frSVtGy7qpqDygLoUc04Q9JS6oXxUU6JXa_R6db1eXTOpeasP1hTh9m3GYgfwR9lfLwrADkAXJ_0alzSW67zf9eY_Ijf8Q-nJB_4HlXyoeA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>O'Donnell, Kane M</creator><creator>Edmonds, Mark T</creator><creator>Ristein, Jürgen</creator><creator>Rietwyk, Kevin J</creator><creator>Tadich, Anton</creator><creator>Thomsen, Lars</creator><creator>Pakes, Christopher I</creator><creator>Ley, Lothar</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20141001</creationdate><title>Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission</title><author>O'Donnell, Kane M ; Edmonds, Mark T ; Ristein, Jürgen ; Rietwyk, Kevin J ; Tadich, Anton ; Thomsen, Lars ; Pakes, Christopher I ; Ley, Lothar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f4879fb360852d0002bd44e3e1277ee2630eae68d4fbd6cfc8dbc546adbb7f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carriers</topic><topic>Conduction band</topic><topic>Diamonds</topic><topic>Electron emission</topic><topic>Emission</topic><topic>hot electrons</topic><topic>Kinetic energy</topic><topic>negative electron affinity</topic><topic>Phonons</topic><topic>photoelectron spectroscopy</topic><topic>Spectral emissivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Donnell, Kane M</creatorcontrib><creatorcontrib>Edmonds, Mark T</creatorcontrib><creatorcontrib>Ristein, Jürgen</creatorcontrib><creatorcontrib>Rietwyk, Kevin J</creatorcontrib><creatorcontrib>Tadich, Anton</creatorcontrib><creatorcontrib>Thomsen, Lars</creatorcontrib><creatorcontrib>Pakes, Christopher I</creatorcontrib><creatorcontrib>Ley, Lothar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Donnell, Kane M</au><au>Edmonds, Mark T</au><au>Ristein, Jürgen</au><au>Rietwyk, Kevin J</au><au>Tadich, Anton</au><au>Thomsen, Lars</au><au>Pakes, Christopher I</au><au>Ley, Lothar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>26</volume><issue>39</issue><spage>395008</spage><epage>395008</epage><pages>395008-395008</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25192212</pmid><doi>10.1088/0953-8984/26/39/395008</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2014-10, Vol.26 (39), p.395008-395008
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_25192212
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Carriers
Conduction band
Diamonds
Electron emission
Emission
hot electrons
Kinetic energy
negative electron affinity
Phonons
photoelectron spectroscopy
Spectral emissivity
title Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20of%20phonon%20emission%20from%20hot%20electrons:%20spectral%20features%20in%20diamond%20secondary%20electron%20emission&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=O'Donnell,%20Kane%20M&rft.date=2014-10-01&rft.volume=26&rft.issue=39&rft.spage=395008&rft.epage=395008&rft.pages=395008-395008&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/26/39/395008&rft_dat=%3Cproquest_pubme%3E1685787921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561973457&rft_id=info:pmid/25192212&rfr_iscdi=true