Biophysics of protein evolution and evolutionary protein biophysics

The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2014-11, Vol.11 (100), p.20140419-20140419
Hauptverfasser: Sikosek, Tobias, Chan, Hue Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20140419
container_issue 100
container_start_page 20140419
container_title Journal of the Royal Society interface
container_volume 11
creator Sikosek, Tobias
Chan, Hue Sun
description The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.
doi_str_mv 10.1098/rsif.2014.0419
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25165599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1610757258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-55461e680c9a9f03730c778512e4dd909815d7c66d7c7f2945283a52488f0fbf3</originalsourceid><addsrcrecordid>eNp9ks1v1DAQxSNERT_gyhHtkUsWj799QYIVpZW2IEGB4yibOK1LNg52smL719dRSqBCcLE98pt5zz85y54DWQIx-lWIrl5SAnxJOJhH2REoTnMhJX08n7U5zI5jvCGEKSbEk-yQCpBCGHOUrd46313voyvjwteLLvjeunZhd74ZeufbRdFWv6si7GfJZm58mh3URRPts_v9JPty-u5ydZavP74_X71Z56VkvM-F4BKs1KQ0hanHLKRUSguglleVSa8BUalSyrSomhouqGaFoFzrmtSbmp1kr6e53bDZ2qq0bR-KBrvgtikY-sLhw5vWXeOV32EiA0TLNODl_YDgfww29rh1sbRNU7TWDxFBAlFCUaGTdDlJy-BjDLaebYDgSB5H8jiSx5F8anjxZ7hZ_gt1ElxNguD3iZIvne33eOOH0KYSP30-P90BOCAEiWZABGfC4K3rJicAdDEOFkfBQ--_o7D_Of3zAfnU5WJvf875i_AdpWJK4FfNcX354RtLPwov2B3SlMLo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610757258</pqid></control><display><type>article</type><title>Biophysics of protein evolution and evolutionary protein biophysics</title><source>MEDLINE</source><source>PubMed Central</source><creator>Sikosek, Tobias ; Chan, Hue Sun</creator><creatorcontrib>Sikosek, Tobias ; Chan, Hue Sun</creatorcontrib><description>The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2014.0419</identifier><identifier>PMID: 25165599</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adaptation ; Conformational Dynamics ; Evolution, Molecular ; Headline Review ; Hidden States ; Promiscuous Functions ; Protein Folding ; Protein Stability ; Proteins - chemistry ; Proteins - genetics ; Protein–protein Interactions ; Review ; Review Articles</subject><ispartof>Journal of the Royal Society interface, 2014-11, Vol.11 (100), p.20140419-20140419</ispartof><rights>2014 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2014 The Author(s) Published by the Royal Society. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-55461e680c9a9f03730c778512e4dd909815d7c66d7c7f2945283a52488f0fbf3</citedby><cites>FETCH-LOGICAL-c634t-55461e680c9a9f03730c778512e4dd909815d7c66d7c7f2945283a52488f0fbf3</cites><orcidid>0000-0001-9929-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191086/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191086/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25165599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sikosek, Tobias</creatorcontrib><creatorcontrib>Chan, Hue Sun</creatorcontrib><title>Biophysics of protein evolution and evolutionary protein biophysics</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.</description><subject>Adaptation</subject><subject>Conformational Dynamics</subject><subject>Evolution, Molecular</subject><subject>Headline Review</subject><subject>Hidden States</subject><subject>Promiscuous Functions</subject><subject>Protein Folding</subject><subject>Protein Stability</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Protein–protein Interactions</subject><subject>Review</subject><subject>Review Articles</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1v1DAQxSNERT_gyhHtkUsWj799QYIVpZW2IEGB4yibOK1LNg52smL719dRSqBCcLE98pt5zz85y54DWQIx-lWIrl5SAnxJOJhH2REoTnMhJX08n7U5zI5jvCGEKSbEk-yQCpBCGHOUrd46313voyvjwteLLvjeunZhd74ZeufbRdFWv6si7GfJZm58mh3URRPts_v9JPty-u5ydZavP74_X71Z56VkvM-F4BKs1KQ0hanHLKRUSguglleVSa8BUalSyrSomhouqGaFoFzrmtSbmp1kr6e53bDZ2qq0bR-KBrvgtikY-sLhw5vWXeOV32EiA0TLNODl_YDgfww29rh1sbRNU7TWDxFBAlFCUaGTdDlJy-BjDLaebYDgSB5H8jiSx5F8anjxZ7hZ_gt1ElxNguD3iZIvne33eOOH0KYSP30-P90BOCAEiWZABGfC4K3rJicAdDEOFkfBQ--_o7D_Of3zAfnU5WJvf875i_AdpWJK4FfNcX354RtLPwov2B3SlMLo</recordid><startdate>20141106</startdate><enddate>20141106</enddate><creator>Sikosek, Tobias</creator><creator>Chan, Hue Sun</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9929-3525</orcidid></search><sort><creationdate>20141106</creationdate><title>Biophysics of protein evolution and evolutionary protein biophysics</title><author>Sikosek, Tobias ; Chan, Hue Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-55461e680c9a9f03730c778512e4dd909815d7c66d7c7f2945283a52488f0fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Conformational Dynamics</topic><topic>Evolution, Molecular</topic><topic>Headline Review</topic><topic>Hidden States</topic><topic>Promiscuous Functions</topic><topic>Protein Folding</topic><topic>Protein Stability</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Protein–protein Interactions</topic><topic>Review</topic><topic>Review Articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikosek, Tobias</creatorcontrib><creatorcontrib>Chan, Hue Sun</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikosek, Tobias</au><au>Chan, Hue Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysics of protein evolution and evolutionary protein biophysics</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2014-11-06</date><risdate>2014</risdate><volume>11</volume><issue>100</issue><spage>20140419</spage><epage>20140419</epage><pages>20140419-20140419</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>25165599</pmid><doi>10.1098/rsif.2014.0419</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9929-3525</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2014-11, Vol.11 (100), p.20140419-20140419
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmed_primary_25165599
source MEDLINE; PubMed Central
subjects Adaptation
Conformational Dynamics
Evolution, Molecular
Headline Review
Hidden States
Promiscuous Functions
Protein Folding
Protein Stability
Proteins - chemistry
Proteins - genetics
Protein–protein Interactions
Review
Review Articles
title Biophysics of protein evolution and evolutionary protein biophysics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysics%20of%20protein%20evolution%20and%20evolutionary%20protein%20biophysics&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Sikosek,%20Tobias&rft.date=2014-11-06&rft.volume=11&rft.issue=100&rft.spage=20140419&rft.epage=20140419&rft.pages=20140419-20140419&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2014.0419&rft_dat=%3Cproquest_pubme%3E1610757258%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610757258&rft_id=info:pmid/25165599&rfr_iscdi=true