Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein
Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the cha...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-09, Vol.111 (37), p.13355-13360 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13360 |
---|---|
container_issue | 37 |
container_start_page | 13355 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Kellner, Ruth Hofmann, Hagen Barducci, Alessandro Wunderlich, Bengt Nettels, Daniel Schuler, Benjamin |
description | Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the changes that occur in the substrate proteins and understand how these changes prevent misfolding or aggregation. Here we investigate a chaperone system that keeps the substrate protein denatured by clamping the polypeptide chain. We observe an expansion of the substrate protein chain up to 30-fold in volume owing to steric repulsion between multiple copies of the chaperone bound to a single substrate protein. In this way, unwanted interactions within or between substrate proteins can be prevented. |
doi_str_mv | 10.1073/pnas.1407086111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25165400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43043474</jstor_id><sourcerecordid>43043474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-a0c68d2540233a80b8351269c2cb4be2ccc94634b02466e60859ff8da64f0f803</originalsourceid><addsrcrecordid>eNqFkctv1DAQxi0EosvCmRMQiQuXtDN-Jb4goYqXVIlDKVfL8Tpbr7J2sJOK_vc42mV5XDhZmvnN52_mI-Q5wjlCwy7GYPI5cmiglYj4gKwQFNaSK3hIVgC0qVtO-Rl5kvMOAJRo4TE5owKl4AAr8u3ah-3g6n0cnJ0HV-XR2SnFbON4XyV358yQK3trRpdiKJzbeDO5TeV-jCZkH0MV-yrPXZ5SqVdjipPz4Sl51JdB9-z4rsnNh_dfLz_VV18-fr58d1VbQcVUG7Cy3dBihTJmWuhaJpBKZanteOeotVZxyXgHlEvpJLRC9X27MZL30LfA1uTtQXecu2LNulBsDHpMfm_SvY7G6787wd_qbbzTHKVSTBWBN0eBFL_PLk9677N1w2CCi3PWWD4BBQ3y_6NCMpDYoCzo63_QXZxTKJdYKI5cLemtycWBsuXeObn-5BtBL4Be4tW_4y0TL_9c98T_yrMA1RFYJk9yiJo1GhkToiAvDsguTzGdGM6AM94sa7469HsTtdkmn_XNNQWUAMi5YA37CbkPvqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564149107</pqid></control><display><type>article</type><title>Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kellner, Ruth ; Hofmann, Hagen ; Barducci, Alessandro ; Wunderlich, Bengt ; Nettels, Daniel ; Schuler, Benjamin</creator><creatorcontrib>Kellner, Ruth ; Hofmann, Hagen ; Barducci, Alessandro ; Wunderlich, Bengt ; Nettels, Daniel ; Schuler, Benjamin</creatorcontrib><description>Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the changes that occur in the substrate proteins and understand how these changes prevent misfolding or aggregation. Here we investigate a chaperone system that keeps the substrate protein denatured by clamping the polypeptide chain. We observe an expansion of the substrate protein chain up to 30-fold in volume owing to steric repulsion between multiple copies of the chaperone bound to a single substrate protein. In this way, unwanted interactions within or between substrate proteins can be prevented.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1407086111</identifier><identifier>PMID: 25165400</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aggregation ; Binding Sites ; Biological Sciences ; Computer Simulation ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Fluorescence ; Histograms ; HSP40 Heat-Shock Proteins - metabolism ; HSP70 Heat-Shock Proteins - metabolism ; Kinetics ; Lead ; Microfluidics ; Models, Molecular ; Molecular chaperones ; Molecular Chaperones - metabolism ; Molecules ; polypeptides ; Protein Denaturation ; Protein folding ; Protein refolding ; Proteins ; Simulation ; Spectrometry, Fluorescence - methods ; Spectroscopy ; Spectrum analysis ; Substrate Specificity ; Thiosulfate Sulfurtransferase - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (37), p.13355-13360</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 16, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-a0c68d2540233a80b8351269c2cb4be2ccc94634b02466e60859ff8da64f0f803</citedby><cites>FETCH-LOGICAL-c525t-a0c68d2540233a80b8351269c2cb4be2ccc94634b02466e60859ff8da64f0f803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43043474$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43043474$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25165400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kellner, Ruth</creatorcontrib><creatorcontrib>Hofmann, Hagen</creatorcontrib><creatorcontrib>Barducci, Alessandro</creatorcontrib><creatorcontrib>Wunderlich, Bengt</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><title>Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the changes that occur in the substrate proteins and understand how these changes prevent misfolding or aggregation. Here we investigate a chaperone system that keeps the substrate protein denatured by clamping the polypeptide chain. We observe an expansion of the substrate protein chain up to 30-fold in volume owing to steric repulsion between multiple copies of the chaperone bound to a single substrate protein. In this way, unwanted interactions within or between substrate proteins can be prevented.</description><subject>Aggregation</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence</subject><subject>Histograms</subject><subject>HSP40 Heat-Shock Proteins - metabolism</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Kinetics</subject><subject>Lead</subject><subject>Microfluidics</subject><subject>Models, Molecular</subject><subject>Molecular chaperones</subject><subject>Molecular Chaperones - metabolism</subject><subject>Molecules</subject><subject>polypeptides</subject><subject>Protein Denaturation</subject><subject>Protein folding</subject><subject>Protein refolding</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substrate Specificity</subject><subject>Thiosulfate Sulfurtransferase - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctv1DAQxi0EosvCmRMQiQuXtDN-Jb4goYqXVIlDKVfL8Tpbr7J2sJOK_vc42mV5XDhZmvnN52_mI-Q5wjlCwy7GYPI5cmiglYj4gKwQFNaSK3hIVgC0qVtO-Rl5kvMOAJRo4TE5owKl4AAr8u3ah-3g6n0cnJ0HV-XR2SnFbON4XyV358yQK3trRpdiKJzbeDO5TeV-jCZkH0MV-yrPXZ5SqVdjipPz4Sl51JdB9-z4rsnNh_dfLz_VV18-fr58d1VbQcVUG7Cy3dBihTJmWuhaJpBKZanteOeotVZxyXgHlEvpJLRC9X27MZL30LfA1uTtQXecu2LNulBsDHpMfm_SvY7G6787wd_qbbzTHKVSTBWBN0eBFL_PLk9677N1w2CCi3PWWD4BBQ3y_6NCMpDYoCzo63_QXZxTKJdYKI5cLemtycWBsuXeObn-5BtBL4Be4tW_4y0TL_9c98T_yrMA1RFYJk9yiJo1GhkToiAvDsguTzGdGM6AM94sa7469HsTtdkmn_XNNQWUAMi5YA37CbkPvqY</recordid><startdate>20140916</startdate><enddate>20140916</enddate><creator>Kellner, Ruth</creator><creator>Hofmann, Hagen</creator><creator>Barducci, Alessandro</creator><creator>Wunderlich, Bengt</creator><creator>Nettels, Daniel</creator><creator>Schuler, Benjamin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140916</creationdate><title>Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein</title><author>Kellner, Ruth ; Hofmann, Hagen ; Barducci, Alessandro ; Wunderlich, Bengt ; Nettels, Daniel ; Schuler, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-a0c68d2540233a80b8351269c2cb4be2ccc94634b02466e60859ff8da64f0f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aggregation</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence</topic><topic>Histograms</topic><topic>HSP40 Heat-Shock Proteins - metabolism</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Kinetics</topic><topic>Lead</topic><topic>Microfluidics</topic><topic>Models, Molecular</topic><topic>Molecular chaperones</topic><topic>Molecular Chaperones - metabolism</topic><topic>Molecules</topic><topic>polypeptides</topic><topic>Protein Denaturation</topic><topic>Protein folding</topic><topic>Protein refolding</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substrate Specificity</topic><topic>Thiosulfate Sulfurtransferase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellner, Ruth</creatorcontrib><creatorcontrib>Hofmann, Hagen</creatorcontrib><creatorcontrib>Barducci, Alessandro</creatorcontrib><creatorcontrib>Wunderlich, Bengt</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellner, Ruth</au><au>Hofmann, Hagen</au><au>Barducci, Alessandro</au><au>Wunderlich, Bengt</au><au>Nettels, Daniel</au><au>Schuler, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-09-16</date><risdate>2014</risdate><volume>111</volume><issue>37</issue><spage>13355</spage><epage>13360</epage><pages>13355-13360</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the changes that occur in the substrate proteins and understand how these changes prevent misfolding or aggregation. Here we investigate a chaperone system that keeps the substrate protein denatured by clamping the polypeptide chain. We observe an expansion of the substrate protein chain up to 30-fold in volume owing to steric repulsion between multiple copies of the chaperone bound to a single substrate protein. In this way, unwanted interactions within or between substrate proteins can be prevented.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25165400</pmid><doi>10.1073/pnas.1407086111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (37), p.13355-13360 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_25165400 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aggregation Binding Sites Biological Sciences Computer Simulation Escherichia coli - metabolism Escherichia coli Proteins - metabolism Fluorescence Histograms HSP40 Heat-Shock Proteins - metabolism HSP70 Heat-Shock Proteins - metabolism Kinetics Lead Microfluidics Models, Molecular Molecular chaperones Molecular Chaperones - metabolism Molecules polypeptides Protein Denaturation Protein folding Protein refolding Proteins Simulation Spectrometry, Fluorescence - methods Spectroscopy Spectrum analysis Substrate Specificity Thiosulfate Sulfurtransferase - metabolism |
title | Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20spectroscopy%20reveals%20chaperone-mediated%20expansion%20of%20substrate%20protein&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kellner,%20Ruth&rft.date=2014-09-16&rft.volume=111&rft.issue=37&rft.spage=13355&rft.epage=13360&rft.pages=13355-13360&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1407086111&rft_dat=%3Cjstor_pubme%3E43043474%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564149107&rft_id=info:pmid/25165400&rft_jstor_id=43043474&rfr_iscdi=true |