Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein

Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-09, Vol.111 (37), p.13355-13360
Hauptverfasser: Kellner, Ruth, Hofmann, Hagen, Barducci, Alessandro, Wunderlich, Bengt, Nettels, Daniel, Schuler, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13360
container_issue 37
container_start_page 13355
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Kellner, Ruth
Hofmann, Hagen
Barducci, Alessandro
Wunderlich, Bengt
Nettels, Daniel
Schuler, Benjamin
description Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the changes that occur in the substrate proteins and understand how these changes prevent misfolding or aggregation. Here we investigate a chaperone system that keeps the substrate protein denatured by clamping the polypeptide chain. We observe an expansion of the substrate protein chain up to 30-fold in volume owing to steric repulsion between multiple copies of the chaperone bound to a single substrate protein. In this way, unwanted interactions within or between substrate proteins can be prevented.
doi_str_mv 10.1073/pnas.1407086111
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25165400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43043474</jstor_id><sourcerecordid>43043474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-a0c68d2540233a80b8351269c2cb4be2ccc94634b02466e60859ff8da64f0f803</originalsourceid><addsrcrecordid>eNqFkctv1DAQxi0EosvCmRMQiQuXtDN-Jb4goYqXVIlDKVfL8Tpbr7J2sJOK_vc42mV5XDhZmvnN52_mI-Q5wjlCwy7GYPI5cmiglYj4gKwQFNaSK3hIVgC0qVtO-Rl5kvMOAJRo4TE5owKl4AAr8u3ah-3g6n0cnJ0HV-XR2SnFbON4XyV358yQK3trRpdiKJzbeDO5TeV-jCZkH0MV-yrPXZ5SqVdjipPz4Sl51JdB9-z4rsnNh_dfLz_VV18-fr58d1VbQcVUG7Cy3dBihTJmWuhaJpBKZanteOeotVZxyXgHlEvpJLRC9X27MZL30LfA1uTtQXecu2LNulBsDHpMfm_SvY7G6787wd_qbbzTHKVSTBWBN0eBFL_PLk9677N1w2CCi3PWWD4BBQ3y_6NCMpDYoCzo63_QXZxTKJdYKI5cLemtycWBsuXeObn-5BtBL4Be4tW_4y0TL_9c98T_yrMA1RFYJk9yiJo1GhkToiAvDsguTzGdGM6AM94sa7469HsTtdkmn_XNNQWUAMi5YA37CbkPvqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564149107</pqid></control><display><type>article</type><title>Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kellner, Ruth ; Hofmann, Hagen ; Barducci, Alessandro ; Wunderlich, Bengt ; Nettels, Daniel ; Schuler, Benjamin</creator><creatorcontrib>Kellner, Ruth ; Hofmann, Hagen ; Barducci, Alessandro ; Wunderlich, Bengt ; Nettels, Daniel ; Schuler, Benjamin</creatorcontrib><description>Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the changes that occur in the substrate proteins and understand how these changes prevent misfolding or aggregation. Here we investigate a chaperone system that keeps the substrate protein denatured by clamping the polypeptide chain. We observe an expansion of the substrate protein chain up to 30-fold in volume owing to steric repulsion between multiple copies of the chaperone bound to a single substrate protein. In this way, unwanted interactions within or between substrate proteins can be prevented.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1407086111</identifier><identifier>PMID: 25165400</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aggregation ; Binding Sites ; Biological Sciences ; Computer Simulation ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Fluorescence ; Histograms ; HSP40 Heat-Shock Proteins - metabolism ; HSP70 Heat-Shock Proteins - metabolism ; Kinetics ; Lead ; Microfluidics ; Models, Molecular ; Molecular chaperones ; Molecular Chaperones - metabolism ; Molecules ; polypeptides ; Protein Denaturation ; Protein folding ; Protein refolding ; Proteins ; Simulation ; Spectrometry, Fluorescence - methods ; Spectroscopy ; Spectrum analysis ; Substrate Specificity ; Thiosulfate Sulfurtransferase - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (37), p.13355-13360</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 16, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-a0c68d2540233a80b8351269c2cb4be2ccc94634b02466e60859ff8da64f0f803</citedby><cites>FETCH-LOGICAL-c525t-a0c68d2540233a80b8351269c2cb4be2ccc94634b02466e60859ff8da64f0f803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43043474$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43043474$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25165400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kellner, Ruth</creatorcontrib><creatorcontrib>Hofmann, Hagen</creatorcontrib><creatorcontrib>Barducci, Alessandro</creatorcontrib><creatorcontrib>Wunderlich, Bengt</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><title>Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the changes that occur in the substrate proteins and understand how these changes prevent misfolding or aggregation. Here we investigate a chaperone system that keeps the substrate protein denatured by clamping the polypeptide chain. We observe an expansion of the substrate protein chain up to 30-fold in volume owing to steric repulsion between multiple copies of the chaperone bound to a single substrate protein. In this way, unwanted interactions within or between substrate proteins can be prevented.</description><subject>Aggregation</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence</subject><subject>Histograms</subject><subject>HSP40 Heat-Shock Proteins - metabolism</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Kinetics</subject><subject>Lead</subject><subject>Microfluidics</subject><subject>Models, Molecular</subject><subject>Molecular chaperones</subject><subject>Molecular Chaperones - metabolism</subject><subject>Molecules</subject><subject>polypeptides</subject><subject>Protein Denaturation</subject><subject>Protein folding</subject><subject>Protein refolding</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substrate Specificity</subject><subject>Thiosulfate Sulfurtransferase - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctv1DAQxi0EosvCmRMQiQuXtDN-Jb4goYqXVIlDKVfL8Tpbr7J2sJOK_vc42mV5XDhZmvnN52_mI-Q5wjlCwy7GYPI5cmiglYj4gKwQFNaSK3hIVgC0qVtO-Rl5kvMOAJRo4TE5owKl4AAr8u3ah-3g6n0cnJ0HV-XR2SnFbON4XyV358yQK3trRpdiKJzbeDO5TeV-jCZkH0MV-yrPXZ5SqVdjipPz4Sl51JdB9-z4rsnNh_dfLz_VV18-fr58d1VbQcVUG7Cy3dBihTJmWuhaJpBKZanteOeotVZxyXgHlEvpJLRC9X27MZL30LfA1uTtQXecu2LNulBsDHpMfm_SvY7G6787wd_qbbzTHKVSTBWBN0eBFL_PLk9677N1w2CCi3PWWD4BBQ3y_6NCMpDYoCzo63_QXZxTKJdYKI5cLemtycWBsuXeObn-5BtBL4Be4tW_4y0TL_9c98T_yrMA1RFYJk9yiJo1GhkToiAvDsguTzGdGM6AM94sa7469HsTtdkmn_XNNQWUAMi5YA37CbkPvqY</recordid><startdate>20140916</startdate><enddate>20140916</enddate><creator>Kellner, Ruth</creator><creator>Hofmann, Hagen</creator><creator>Barducci, Alessandro</creator><creator>Wunderlich, Bengt</creator><creator>Nettels, Daniel</creator><creator>Schuler, Benjamin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140916</creationdate><title>Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein</title><author>Kellner, Ruth ; Hofmann, Hagen ; Barducci, Alessandro ; Wunderlich, Bengt ; Nettels, Daniel ; Schuler, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-a0c68d2540233a80b8351269c2cb4be2ccc94634b02466e60859ff8da64f0f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aggregation</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence</topic><topic>Histograms</topic><topic>HSP40 Heat-Shock Proteins - metabolism</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Kinetics</topic><topic>Lead</topic><topic>Microfluidics</topic><topic>Models, Molecular</topic><topic>Molecular chaperones</topic><topic>Molecular Chaperones - metabolism</topic><topic>Molecules</topic><topic>polypeptides</topic><topic>Protein Denaturation</topic><topic>Protein folding</topic><topic>Protein refolding</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substrate Specificity</topic><topic>Thiosulfate Sulfurtransferase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellner, Ruth</creatorcontrib><creatorcontrib>Hofmann, Hagen</creatorcontrib><creatorcontrib>Barducci, Alessandro</creatorcontrib><creatorcontrib>Wunderlich, Bengt</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellner, Ruth</au><au>Hofmann, Hagen</au><au>Barducci, Alessandro</au><au>Wunderlich, Bengt</au><au>Nettels, Daniel</au><au>Schuler, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-09-16</date><risdate>2014</risdate><volume>111</volume><issue>37</issue><spage>13355</spage><epage>13360</epage><pages>13355-13360</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance Molecular chaperones are a group of proteins that are essential for avoiding the aggregation of other proteins in the crowded cellular environment. Chaperones function by interacting with these substrate proteins in different ways. However, it has remained a challenge to measure the changes that occur in the substrate proteins and understand how these changes prevent misfolding or aggregation. Here we investigate a chaperone system that keeps the substrate protein denatured by clamping the polypeptide chain. We observe an expansion of the substrate protein chain up to 30-fold in volume owing to steric repulsion between multiple copies of the chaperone bound to a single substrate protein. In this way, unwanted interactions within or between substrate proteins can be prevented.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25165400</pmid><doi>10.1073/pnas.1407086111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (37), p.13355-13360
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_25165400
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aggregation
Binding Sites
Biological Sciences
Computer Simulation
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
Fluorescence
Histograms
HSP40 Heat-Shock Proteins - metabolism
HSP70 Heat-Shock Proteins - metabolism
Kinetics
Lead
Microfluidics
Models, Molecular
Molecular chaperones
Molecular Chaperones - metabolism
Molecules
polypeptides
Protein Denaturation
Protein folding
Protein refolding
Proteins
Simulation
Spectrometry, Fluorescence - methods
Spectroscopy
Spectrum analysis
Substrate Specificity
Thiosulfate Sulfurtransferase - metabolism
title Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20spectroscopy%20reveals%20chaperone-mediated%20expansion%20of%20substrate%20protein&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kellner,%20Ruth&rft.date=2014-09-16&rft.volume=111&rft.issue=37&rft.spage=13355&rft.epage=13360&rft.pages=13355-13360&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1407086111&rft_dat=%3Cjstor_pubme%3E43043474%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564149107&rft_id=info:pmid/25165400&rft_jstor_id=43043474&rfr_iscdi=true