Formation, migration, and clustering of point defects in CuInSe2 from first principles

The electronic properties of high-efficiency CuInSe2 (CIS)-based solar cells are affected by the microstructural features of the absorber layer, such as point defect types and their distribution. Recently, there has been controversy over whether some of the typical point defects in CIS-VCu, VSe, InC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2014-08, Vol.26 (34), p.345501-345501
Hauptverfasser: Oikkonen, L E, Ganchenkova, M G, Seitsonen, A P, Nieminen, R M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345501
container_issue 34
container_start_page 345501
container_title Journal of physics. Condensed matter
container_volume 26
creator Oikkonen, L E
Ganchenkova, M G
Seitsonen, A P
Nieminen, R M
description The electronic properties of high-efficiency CuInSe2 (CIS)-based solar cells are affected by the microstructural features of the absorber layer, such as point defect types and their distribution. Recently, there has been controversy over whether some of the typical point defects in CIS-VCu, VSe, InCu, CuIn-can form stable complexes in the material. In this work, we demonstrate that the presence of defect complexes during device operational time can be justified by taking into account the thermodynamic and kinetic driving forces acting behind defect microstructure formation. Our conclusions are backed up by thorough state-of-the-art calculations of defect interaction potentials as well as the activation barriers surrounding the complexes. Defect complexes such as InCu−2VCu, InCu−CuIn, and VSe−VCu are shown to be stable against thermal dissociation at device operating temperatures, but can anneal out within tens of minutes at temperatures higher than 150-200 °C (VCu-related complexes) or 400 °C (antisite pair). Our results suggest that the presence of these complexes can be controlled via growth temperatures, which provides a mechanism for tuning the electronic activity of defects and the device altogether.
doi_str_mv 10.1088/0953-8984/26/34/345501
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25105526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1552370214</sourcerecordid><originalsourceid>FETCH-LOGICAL-i286t-29134726d08872579dd3b38890105fbd463c66331d1c2a875aed57ee218734463</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMobk7_wsidXlib76aXMpwOBl74gXeha9KR0SY1aS_892ZsCoIQOIHznMN7HgDmGN1hJGWOSk4zWUqWE5FTlh7nCJ-AKaYCZ4LJj1Mw_YUm4CLGHUKIScrOwYRwjDgnYgrelz501WC9u4Wd3Ybjt3Ia1u0YBxOs20LfwN5bN0BtGlMPEVoHF-PKvRgCm-A72NgQB9gnuLZ9a-IlOGuqNpqrY52Bt-XD6-IpWz8_rhb368wSKYaMlJiyggidTioIL0qt6YZKWaKUr9loJmgtBKVY45pUsuCV0bwwhmBZUJa6M3Bz2NsH_zmaOKjOxtq0beWMH6PC6UpaIIJZQudHdNx0RqsUtqvCl_pxkQByAKzv1c6PwaXkCiO1F672LtXepSJCUaYOwtPQ9T9DdfeHUr1u6DchgHvh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552370214</pqid></control><display><type>article</type><title>Formation, migration, and clustering of point defects in CuInSe2 from first principles</title><source>Institute of Physics Journals</source><creator>Oikkonen, L E ; Ganchenkova, M G ; Seitsonen, A P ; Nieminen, R M</creator><creatorcontrib>Oikkonen, L E ; Ganchenkova, M G ; Seitsonen, A P ; Nieminen, R M</creatorcontrib><description>The electronic properties of high-efficiency CuInSe2 (CIS)-based solar cells are affected by the microstructural features of the absorber layer, such as point defect types and their distribution. Recently, there has been controversy over whether some of the typical point defects in CIS-VCu, VSe, InCu, CuIn-can form stable complexes in the material. In this work, we demonstrate that the presence of defect complexes during device operational time can be justified by taking into account the thermodynamic and kinetic driving forces acting behind defect microstructure formation. Our conclusions are backed up by thorough state-of-the-art calculations of defect interaction potentials as well as the activation barriers surrounding the complexes. Defect complexes such as InCu−2VCu, InCu−CuIn, and VSe−VCu are shown to be stable against thermal dissociation at device operating temperatures, but can anneal out within tens of minutes at temperatures higher than 150-200 °C (VCu-related complexes) or 400 °C (antisite pair). Our results suggest that the presence of these complexes can be controlled via growth temperatures, which provides a mechanism for tuning the electronic activity of defects and the device altogether.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/26/34/345501</identifier><identifier>PMID: 25105526</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>density-functional theory ; diffusion ; point defect complexes</subject><ispartof>Journal of physics. Condensed matter, 2014-08, Vol.26 (34), p.345501-345501</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/26/34/345501/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25105526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oikkonen, L E</creatorcontrib><creatorcontrib>Ganchenkova, M G</creatorcontrib><creatorcontrib>Seitsonen, A P</creatorcontrib><creatorcontrib>Nieminen, R M</creatorcontrib><title>Formation, migration, and clustering of point defects in CuInSe2 from first principles</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>The electronic properties of high-efficiency CuInSe2 (CIS)-based solar cells are affected by the microstructural features of the absorber layer, such as point defect types and their distribution. Recently, there has been controversy over whether some of the typical point defects in CIS-VCu, VSe, InCu, CuIn-can form stable complexes in the material. In this work, we demonstrate that the presence of defect complexes during device operational time can be justified by taking into account the thermodynamic and kinetic driving forces acting behind defect microstructure formation. Our conclusions are backed up by thorough state-of-the-art calculations of defect interaction potentials as well as the activation barriers surrounding the complexes. Defect complexes such as InCu−2VCu, InCu−CuIn, and VSe−VCu are shown to be stable against thermal dissociation at device operating temperatures, but can anneal out within tens of minutes at temperatures higher than 150-200 °C (VCu-related complexes) or 400 °C (antisite pair). Our results suggest that the presence of these complexes can be controlled via growth temperatures, which provides a mechanism for tuning the electronic activity of defects and the device altogether.</description><subject>density-functional theory</subject><subject>diffusion</subject><subject>point defect complexes</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkF1LwzAUhoMobk7_wsidXlib76aXMpwOBl74gXeha9KR0SY1aS_892ZsCoIQOIHznMN7HgDmGN1hJGWOSk4zWUqWE5FTlh7nCJ-AKaYCZ4LJj1Mw_YUm4CLGHUKIScrOwYRwjDgnYgrelz501WC9u4Wd3Ybjt3Ia1u0YBxOs20LfwN5bN0BtGlMPEVoHF-PKvRgCm-A72NgQB9gnuLZ9a-IlOGuqNpqrY52Bt-XD6-IpWz8_rhb368wSKYaMlJiyggidTioIL0qt6YZKWaKUr9loJmgtBKVY45pUsuCV0bwwhmBZUJa6M3Bz2NsH_zmaOKjOxtq0beWMH6PC6UpaIIJZQudHdNx0RqsUtqvCl_pxkQByAKzv1c6PwaXkCiO1F672LtXepSJCUaYOwtPQ9T9DdfeHUr1u6DchgHvh</recordid><startdate>20140827</startdate><enddate>20140827</enddate><creator>Oikkonen, L E</creator><creator>Ganchenkova, M G</creator><creator>Seitsonen, A P</creator><creator>Nieminen, R M</creator><general>IOP Publishing</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140827</creationdate><title>Formation, migration, and clustering of point defects in CuInSe2 from first principles</title><author>Oikkonen, L E ; Ganchenkova, M G ; Seitsonen, A P ; Nieminen, R M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i286t-29134726d08872579dd3b38890105fbd463c66331d1c2a875aed57ee218734463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>density-functional theory</topic><topic>diffusion</topic><topic>point defect complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oikkonen, L E</creatorcontrib><creatorcontrib>Ganchenkova, M G</creatorcontrib><creatorcontrib>Seitsonen, A P</creatorcontrib><creatorcontrib>Nieminen, R M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oikkonen, L E</au><au>Ganchenkova, M G</au><au>Seitsonen, A P</au><au>Nieminen, R M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation, migration, and clustering of point defects in CuInSe2 from first principles</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2014-08-27</date><risdate>2014</risdate><volume>26</volume><issue>34</issue><spage>345501</spage><epage>345501</epage><pages>345501-345501</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>The electronic properties of high-efficiency CuInSe2 (CIS)-based solar cells are affected by the microstructural features of the absorber layer, such as point defect types and their distribution. Recently, there has been controversy over whether some of the typical point defects in CIS-VCu, VSe, InCu, CuIn-can form stable complexes in the material. In this work, we demonstrate that the presence of defect complexes during device operational time can be justified by taking into account the thermodynamic and kinetic driving forces acting behind defect microstructure formation. Our conclusions are backed up by thorough state-of-the-art calculations of defect interaction potentials as well as the activation barriers surrounding the complexes. Defect complexes such as InCu−2VCu, InCu−CuIn, and VSe−VCu are shown to be stable against thermal dissociation at device operating temperatures, but can anneal out within tens of minutes at temperatures higher than 150-200 °C (VCu-related complexes) or 400 °C (antisite pair). Our results suggest that the presence of these complexes can be controlled via growth temperatures, which provides a mechanism for tuning the electronic activity of defects and the device altogether.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25105526</pmid><doi>10.1088/0953-8984/26/34/345501</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2014-08, Vol.26 (34), p.345501-345501
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_25105526
source Institute of Physics Journals
subjects density-functional theory
diffusion
point defect complexes
title Formation, migration, and clustering of point defects in CuInSe2 from first principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation,%20migration,%20and%20clustering%20of%20point%20defects%20in%20CuInSe2%20from%20first%20principles&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Oikkonen,%20L%20E&rft.date=2014-08-27&rft.volume=26&rft.issue=34&rft.spage=345501&rft.epage=345501&rft.pages=345501-345501&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/26/34/345501&rft_dat=%3Cproquest_pubme%3E1552370214%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552370214&rft_id=info:pmid/25105526&rfr_iscdi=true