Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks
The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/w...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical development and technology 2015-11, Vol.20 (7), p.845-853 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 853 |
---|---|
container_issue | 7 |
container_start_page | 845 |
container_title | Pharmaceutical development and technology |
container_volume | 20 |
creator | Mostafavi, Seyed Hossein Aghajani, Mahdi Amani, Amir Darvishi, Behrad Noori Koopaei, Mona Pashazadeh, Ali Mahmoud Maghazei, Mohamad Shahab Alvandifar, Farhad Nabipour, Iraj Karami, Fahimeh Assadi, Majid Dinarvand, Rassoul |
description | The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/water), while the NPs size of PLGA-PMBH was assumed as the output variable. Forty samples of PLGA-PMBH NPs containing anticancer drug (i.e. paclitaxel) were synthesized by changing the variable factors in the experiments. The data modeling were performed using ANNs. The effects of input variables (namely, polymer content, drug content, power of sonication and ratio of acetone/water) on the output variables were evaluated using the 3D graphs obtained after modeling. Contrasting the 3D graphs from the generated model revealed that the amount of polymer (PLGA-PMBH) and drug content (PTX) have direct relation with the size of polymeric NPs in the process. In addition, it was illustrated that the ratio of acetone/water was the most important factor affecting the particle size of PLGA-PMBH NPs provided by solvent evaporation technique. Also, it was found that increasing the sonication power (up to a certain amount) indirectly affects the polymeric NPs size however it was directly affected in higher values. |
doi_str_mv | 10.3109/10837450.2014.930487 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24980221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826596814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-53abc457a5d8501c27f5d9c557c3c21c91c56de5b2bd999d7caa5898a1d08d703</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSNERUvhDRDyskj1rR3Hsb1CVUUBqWo3sI4mY6cYnDjYiSD3PXjfJtyWJav5O3NGo68o3nC2E5yZC860UJVku5LxamcEq7R6VpysI0WNrtXzLdeCbprj4mXO3xnj2jD5ojguK6NZWfKT4s_dOPne72HycSCxIyNg8BP8doGGCNZZMsawkDN7vjYAJ28dxUjvw4IxbMUtHWkPwa0uNpLWDfvokXxbbIL9On9HBhjiCGnyGFwm2e8dmbMf7snW6zx6CGRwc_obpl8x_civiqMOQnavH-Np8fX6w5erT_Tm7uPnq8sbiqIWE5UCWqykAmm1ZBxL1UlrUEqFAkuOhqOsrZNt2VpjjFUIILXRwC3TVjFxWpwdfMcUf84uT03vM7oQYHBxzg3XZS1NrXm1SquDFFPMObmuGZPvIS0NZ80GpHkC0mxAmgOQde3t44W57Z39t_REYBW8Pwj80MXUw_p_sM0ES4ipSzCgz5v9f048AGW3nX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826596814</pqid></control><display><type>article</type><title>Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks</title><source>EBSCOhost Business Source Complete</source><creator>Mostafavi, Seyed Hossein ; Aghajani, Mahdi ; Amani, Amir ; Darvishi, Behrad ; Noori Koopaei, Mona ; Pashazadeh, Ali Mahmoud ; Maghazei, Mohamad Shahab ; Alvandifar, Farhad ; Nabipour, Iraj ; Karami, Fahimeh ; Assadi, Majid ; Dinarvand, Rassoul</creator><creatorcontrib>Mostafavi, Seyed Hossein ; Aghajani, Mahdi ; Amani, Amir ; Darvishi, Behrad ; Noori Koopaei, Mona ; Pashazadeh, Ali Mahmoud ; Maghazei, Mohamad Shahab ; Alvandifar, Farhad ; Nabipour, Iraj ; Karami, Fahimeh ; Assadi, Majid ; Dinarvand, Rassoul</creatorcontrib><description>The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/water), while the NPs size of PLGA-PMBH was assumed as the output variable. Forty samples of PLGA-PMBH NPs containing anticancer drug (i.e. paclitaxel) were synthesized by changing the variable factors in the experiments. The data modeling were performed using ANNs. The effects of input variables (namely, polymer content, drug content, power of sonication and ratio of acetone/water) on the output variables were evaluated using the 3D graphs obtained after modeling. Contrasting the 3D graphs from the generated model revealed that the amount of polymer (PLGA-PMBH) and drug content (PTX) have direct relation with the size of polymeric NPs in the process. In addition, it was illustrated that the ratio of acetone/water was the most important factor affecting the particle size of PLGA-PMBH NPs provided by solvent evaporation technique. Also, it was found that increasing the sonication power (up to a certain amount) indirectly affects the polymeric NPs size however it was directly affected in higher values.</description><identifier>ISSN: 1083-7450</identifier><identifier>EISSN: 1097-9867</identifier><identifier>DOI: 10.3109/10837450.2014.930487</identifier><identifier>PMID: 24980221</identifier><language>eng</language><publisher>England: Informa Healthcare</publisher><subject>Artificial neural networks ; hydrophobic drug ; optimization ; paclitaxel ; particle size ; passive targeting ; PLGA-PMBH nanoparticles</subject><ispartof>Pharmaceutical development and technology, 2015-11, Vol.20 (7), p.845-853</ispartof><rights>2015 Informa Healthcare USA, Inc. All rights reserved: reproduction in whole or part not permitted 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-53abc457a5d8501c27f5d9c557c3c21c91c56de5b2bd999d7caa5898a1d08d703</citedby><cites>FETCH-LOGICAL-c363t-53abc457a5d8501c27f5d9c557c3c21c91c56de5b2bd999d7caa5898a1d08d703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24980221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mostafavi, Seyed Hossein</creatorcontrib><creatorcontrib>Aghajani, Mahdi</creatorcontrib><creatorcontrib>Amani, Amir</creatorcontrib><creatorcontrib>Darvishi, Behrad</creatorcontrib><creatorcontrib>Noori Koopaei, Mona</creatorcontrib><creatorcontrib>Pashazadeh, Ali Mahmoud</creatorcontrib><creatorcontrib>Maghazei, Mohamad Shahab</creatorcontrib><creatorcontrib>Alvandifar, Farhad</creatorcontrib><creatorcontrib>Nabipour, Iraj</creatorcontrib><creatorcontrib>Karami, Fahimeh</creatorcontrib><creatorcontrib>Assadi, Majid</creatorcontrib><creatorcontrib>Dinarvand, Rassoul</creatorcontrib><title>Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks</title><title>Pharmaceutical development and technology</title><addtitle>Pharm Dev Technol</addtitle><description>The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/water), while the NPs size of PLGA-PMBH was assumed as the output variable. Forty samples of PLGA-PMBH NPs containing anticancer drug (i.e. paclitaxel) were synthesized by changing the variable factors in the experiments. The data modeling were performed using ANNs. The effects of input variables (namely, polymer content, drug content, power of sonication and ratio of acetone/water) on the output variables were evaluated using the 3D graphs obtained after modeling. Contrasting the 3D graphs from the generated model revealed that the amount of polymer (PLGA-PMBH) and drug content (PTX) have direct relation with the size of polymeric NPs in the process. In addition, it was illustrated that the ratio of acetone/water was the most important factor affecting the particle size of PLGA-PMBH NPs provided by solvent evaporation technique. Also, it was found that increasing the sonication power (up to a certain amount) indirectly affects the polymeric NPs size however it was directly affected in higher values.</description><subject>Artificial neural networks</subject><subject>hydrophobic drug</subject><subject>optimization</subject><subject>paclitaxel</subject><subject>particle size</subject><subject>passive targeting</subject><subject>PLGA-PMBH nanoparticles</subject><issn>1083-7450</issn><issn>1097-9867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSNERUvhDRDyskj1rR3Hsb1CVUUBqWo3sI4mY6cYnDjYiSD3PXjfJtyWJav5O3NGo68o3nC2E5yZC860UJVku5LxamcEq7R6VpysI0WNrtXzLdeCbprj4mXO3xnj2jD5ojguK6NZWfKT4s_dOPne72HycSCxIyNg8BP8doGGCNZZMsawkDN7vjYAJ28dxUjvw4IxbMUtHWkPwa0uNpLWDfvokXxbbIL9On9HBhjiCGnyGFwm2e8dmbMf7snW6zx6CGRwc_obpl8x_civiqMOQnavH-Np8fX6w5erT_Tm7uPnq8sbiqIWE5UCWqykAmm1ZBxL1UlrUEqFAkuOhqOsrZNt2VpjjFUIILXRwC3TVjFxWpwdfMcUf84uT03vM7oQYHBxzg3XZS1NrXm1SquDFFPMObmuGZPvIS0NZ80GpHkC0mxAmgOQde3t44W57Z39t_REYBW8Pwj80MXUw_p_sM0ES4ipSzCgz5v9f048AGW3nX4</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Mostafavi, Seyed Hossein</creator><creator>Aghajani, Mahdi</creator><creator>Amani, Amir</creator><creator>Darvishi, Behrad</creator><creator>Noori Koopaei, Mona</creator><creator>Pashazadeh, Ali Mahmoud</creator><creator>Maghazei, Mohamad Shahab</creator><creator>Alvandifar, Farhad</creator><creator>Nabipour, Iraj</creator><creator>Karami, Fahimeh</creator><creator>Assadi, Majid</creator><creator>Dinarvand, Rassoul</creator><general>Informa Healthcare</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks</title><author>Mostafavi, Seyed Hossein ; Aghajani, Mahdi ; Amani, Amir ; Darvishi, Behrad ; Noori Koopaei, Mona ; Pashazadeh, Ali Mahmoud ; Maghazei, Mohamad Shahab ; Alvandifar, Farhad ; Nabipour, Iraj ; Karami, Fahimeh ; Assadi, Majid ; Dinarvand, Rassoul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-53abc457a5d8501c27f5d9c557c3c21c91c56de5b2bd999d7caa5898a1d08d703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial neural networks</topic><topic>hydrophobic drug</topic><topic>optimization</topic><topic>paclitaxel</topic><topic>particle size</topic><topic>passive targeting</topic><topic>PLGA-PMBH nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostafavi, Seyed Hossein</creatorcontrib><creatorcontrib>Aghajani, Mahdi</creatorcontrib><creatorcontrib>Amani, Amir</creatorcontrib><creatorcontrib>Darvishi, Behrad</creatorcontrib><creatorcontrib>Noori Koopaei, Mona</creatorcontrib><creatorcontrib>Pashazadeh, Ali Mahmoud</creatorcontrib><creatorcontrib>Maghazei, Mohamad Shahab</creatorcontrib><creatorcontrib>Alvandifar, Farhad</creatorcontrib><creatorcontrib>Nabipour, Iraj</creatorcontrib><creatorcontrib>Karami, Fahimeh</creatorcontrib><creatorcontrib>Assadi, Majid</creatorcontrib><creatorcontrib>Dinarvand, Rassoul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical development and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostafavi, Seyed Hossein</au><au>Aghajani, Mahdi</au><au>Amani, Amir</au><au>Darvishi, Behrad</au><au>Noori Koopaei, Mona</au><au>Pashazadeh, Ali Mahmoud</au><au>Maghazei, Mohamad Shahab</au><au>Alvandifar, Farhad</au><au>Nabipour, Iraj</au><au>Karami, Fahimeh</au><au>Assadi, Majid</au><au>Dinarvand, Rassoul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks</atitle><jtitle>Pharmaceutical development and technology</jtitle><addtitle>Pharm Dev Technol</addtitle><date>2015-11</date><risdate>2015</risdate><volume>20</volume><issue>7</issue><spage>845</spage><epage>853</epage><pages>845-853</pages><issn>1083-7450</issn><eissn>1097-9867</eissn><abstract>The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/water), while the NPs size of PLGA-PMBH was assumed as the output variable. Forty samples of PLGA-PMBH NPs containing anticancer drug (i.e. paclitaxel) were synthesized by changing the variable factors in the experiments. The data modeling were performed using ANNs. The effects of input variables (namely, polymer content, drug content, power of sonication and ratio of acetone/water) on the output variables were evaluated using the 3D graphs obtained after modeling. Contrasting the 3D graphs from the generated model revealed that the amount of polymer (PLGA-PMBH) and drug content (PTX) have direct relation with the size of polymeric NPs in the process. In addition, it was illustrated that the ratio of acetone/water was the most important factor affecting the particle size of PLGA-PMBH NPs provided by solvent evaporation technique. Also, it was found that increasing the sonication power (up to a certain amount) indirectly affects the polymeric NPs size however it was directly affected in higher values.</abstract><cop>England</cop><pub>Informa Healthcare</pub><pmid>24980221</pmid><doi>10.3109/10837450.2014.930487</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-7450 |
ispartof | Pharmaceutical development and technology, 2015-11, Vol.20 (7), p.845-853 |
issn | 1083-7450 1097-9867 |
language | eng |
recordid | cdi_pubmed_primary_24980221 |
source | EBSCOhost Business Source Complete |
subjects | Artificial neural networks hydrophobic drug optimization paclitaxel particle size passive targeting PLGA-PMBH nanoparticles |
title | Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20paclitaxel-loaded%20poly%20(d,l-lactide-co-glycolide-N-p-maleimido%20benzoic%20hydrazide)%20nanoparticles%20size%20using%20artificial%20neural%20networks&rft.jtitle=Pharmaceutical%20development%20and%20technology&rft.au=Mostafavi,%20Seyed%20Hossein&rft.date=2015-11&rft.volume=20&rft.issue=7&rft.spage=845&rft.epage=853&rft.pages=845-853&rft.issn=1083-7450&rft.eissn=1097-9867&rft_id=info:doi/10.3109/10837450.2014.930487&rft_dat=%3Cproquest_pubme%3E1826596814%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826596814&rft_id=info:pmid/24980221&rfr_iscdi=true |