Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks

The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical development and technology 2015-11, Vol.20 (7), p.845-853
Hauptverfasser: Mostafavi, Seyed Hossein, Aghajani, Mahdi, Amani, Amir, Darvishi, Behrad, Noori Koopaei, Mona, Pashazadeh, Ali Mahmoud, Maghazei, Mohamad Shahab, Alvandifar, Farhad, Nabipour, Iraj, Karami, Fahimeh, Assadi, Majid, Dinarvand, Rassoul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 853
container_issue 7
container_start_page 845
container_title Pharmaceutical development and technology
container_volume 20
creator Mostafavi, Seyed Hossein
Aghajani, Mahdi
Amani, Amir
Darvishi, Behrad
Noori Koopaei, Mona
Pashazadeh, Ali Mahmoud
Maghazei, Mohamad Shahab
Alvandifar, Farhad
Nabipour, Iraj
Karami, Fahimeh
Assadi, Majid
Dinarvand, Rassoul
description The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/water), while the NPs size of PLGA-PMBH was assumed as the output variable. Forty samples of PLGA-PMBH NPs containing anticancer drug (i.e. paclitaxel) were synthesized by changing the variable factors in the experiments. The data modeling were performed using ANNs. The effects of input variables (namely, polymer content, drug content, power of sonication and ratio of acetone/water) on the output variables were evaluated using the 3D graphs obtained after modeling. Contrasting the 3D graphs from the generated model revealed that the amount of polymer (PLGA-PMBH) and drug content (PTX) have direct relation with the size of polymeric NPs in the process. In addition, it was illustrated that the ratio of acetone/water was the most important factor affecting the particle size of PLGA-PMBH NPs provided by solvent evaporation technique. Also, it was found that increasing the sonication power (up to a certain amount) indirectly affects the polymeric NPs size however it was directly affected in higher values.
doi_str_mv 10.3109/10837450.2014.930487
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24980221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826596814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-53abc457a5d8501c27f5d9c557c3c21c91c56de5b2bd999d7caa5898a1d08d703</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSNERUvhDRDyskj1rR3Hsb1CVUUBqWo3sI4mY6cYnDjYiSD3PXjfJtyWJav5O3NGo68o3nC2E5yZC860UJVku5LxamcEq7R6VpysI0WNrtXzLdeCbprj4mXO3xnj2jD5ojguK6NZWfKT4s_dOPne72HycSCxIyNg8BP8doGGCNZZMsawkDN7vjYAJ28dxUjvw4IxbMUtHWkPwa0uNpLWDfvokXxbbIL9On9HBhjiCGnyGFwm2e8dmbMf7snW6zx6CGRwc_obpl8x_civiqMOQnavH-Np8fX6w5erT_Tm7uPnq8sbiqIWE5UCWqykAmm1ZBxL1UlrUEqFAkuOhqOsrZNt2VpjjFUIILXRwC3TVjFxWpwdfMcUf84uT03vM7oQYHBxzg3XZS1NrXm1SquDFFPMObmuGZPvIS0NZ80GpHkC0mxAmgOQde3t44W57Z39t_REYBW8Pwj80MXUw_p_sM0ES4ipSzCgz5v9f048AGW3nX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826596814</pqid></control><display><type>article</type><title>Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks</title><source>EBSCOhost Business Source Complete</source><creator>Mostafavi, Seyed Hossein ; Aghajani, Mahdi ; Amani, Amir ; Darvishi, Behrad ; Noori Koopaei, Mona ; Pashazadeh, Ali Mahmoud ; Maghazei, Mohamad Shahab ; Alvandifar, Farhad ; Nabipour, Iraj ; Karami, Fahimeh ; Assadi, Majid ; Dinarvand, Rassoul</creator><creatorcontrib>Mostafavi, Seyed Hossein ; Aghajani, Mahdi ; Amani, Amir ; Darvishi, Behrad ; Noori Koopaei, Mona ; Pashazadeh, Ali Mahmoud ; Maghazei, Mohamad Shahab ; Alvandifar, Farhad ; Nabipour, Iraj ; Karami, Fahimeh ; Assadi, Majid ; Dinarvand, Rassoul</creatorcontrib><description>The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/water), while the NPs size of PLGA-PMBH was assumed as the output variable. Forty samples of PLGA-PMBH NPs containing anticancer drug (i.e. paclitaxel) were synthesized by changing the variable factors in the experiments. The data modeling were performed using ANNs. The effects of input variables (namely, polymer content, drug content, power of sonication and ratio of acetone/water) on the output variables were evaluated using the 3D graphs obtained after modeling. Contrasting the 3D graphs from the generated model revealed that the amount of polymer (PLGA-PMBH) and drug content (PTX) have direct relation with the size of polymeric NPs in the process. In addition, it was illustrated that the ratio of acetone/water was the most important factor affecting the particle size of PLGA-PMBH NPs provided by solvent evaporation technique. Also, it was found that increasing the sonication power (up to a certain amount) indirectly affects the polymeric NPs size however it was directly affected in higher values.</description><identifier>ISSN: 1083-7450</identifier><identifier>EISSN: 1097-9867</identifier><identifier>DOI: 10.3109/10837450.2014.930487</identifier><identifier>PMID: 24980221</identifier><language>eng</language><publisher>England: Informa Healthcare</publisher><subject>Artificial neural networks ; hydrophobic drug ; optimization ; paclitaxel ; particle size ; passive targeting ; PLGA-PMBH nanoparticles</subject><ispartof>Pharmaceutical development and technology, 2015-11, Vol.20 (7), p.845-853</ispartof><rights>2015 Informa Healthcare USA, Inc. All rights reserved: reproduction in whole or part not permitted 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-53abc457a5d8501c27f5d9c557c3c21c91c56de5b2bd999d7caa5898a1d08d703</citedby><cites>FETCH-LOGICAL-c363t-53abc457a5d8501c27f5d9c557c3c21c91c56de5b2bd999d7caa5898a1d08d703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24980221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mostafavi, Seyed Hossein</creatorcontrib><creatorcontrib>Aghajani, Mahdi</creatorcontrib><creatorcontrib>Amani, Amir</creatorcontrib><creatorcontrib>Darvishi, Behrad</creatorcontrib><creatorcontrib>Noori Koopaei, Mona</creatorcontrib><creatorcontrib>Pashazadeh, Ali Mahmoud</creatorcontrib><creatorcontrib>Maghazei, Mohamad Shahab</creatorcontrib><creatorcontrib>Alvandifar, Farhad</creatorcontrib><creatorcontrib>Nabipour, Iraj</creatorcontrib><creatorcontrib>Karami, Fahimeh</creatorcontrib><creatorcontrib>Assadi, Majid</creatorcontrib><creatorcontrib>Dinarvand, Rassoul</creatorcontrib><title>Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks</title><title>Pharmaceutical development and technology</title><addtitle>Pharm Dev Technol</addtitle><description>The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/water), while the NPs size of PLGA-PMBH was assumed as the output variable. Forty samples of PLGA-PMBH NPs containing anticancer drug (i.e. paclitaxel) were synthesized by changing the variable factors in the experiments. The data modeling were performed using ANNs. The effects of input variables (namely, polymer content, drug content, power of sonication and ratio of acetone/water) on the output variables were evaluated using the 3D graphs obtained after modeling. Contrasting the 3D graphs from the generated model revealed that the amount of polymer (PLGA-PMBH) and drug content (PTX) have direct relation with the size of polymeric NPs in the process. In addition, it was illustrated that the ratio of acetone/water was the most important factor affecting the particle size of PLGA-PMBH NPs provided by solvent evaporation technique. Also, it was found that increasing the sonication power (up to a certain amount) indirectly affects the polymeric NPs size however it was directly affected in higher values.</description><subject>Artificial neural networks</subject><subject>hydrophobic drug</subject><subject>optimization</subject><subject>paclitaxel</subject><subject>particle size</subject><subject>passive targeting</subject><subject>PLGA-PMBH nanoparticles</subject><issn>1083-7450</issn><issn>1097-9867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSNERUvhDRDyskj1rR3Hsb1CVUUBqWo3sI4mY6cYnDjYiSD3PXjfJtyWJav5O3NGo68o3nC2E5yZC860UJVku5LxamcEq7R6VpysI0WNrtXzLdeCbprj4mXO3xnj2jD5ojguK6NZWfKT4s_dOPne72HycSCxIyNg8BP8doGGCNZZMsawkDN7vjYAJ28dxUjvw4IxbMUtHWkPwa0uNpLWDfvokXxbbIL9On9HBhjiCGnyGFwm2e8dmbMf7snW6zx6CGRwc_obpl8x_civiqMOQnavH-Np8fX6w5erT_Tm7uPnq8sbiqIWE5UCWqykAmm1ZBxL1UlrUEqFAkuOhqOsrZNt2VpjjFUIILXRwC3TVjFxWpwdfMcUf84uT03vM7oQYHBxzg3XZS1NrXm1SquDFFPMObmuGZPvIS0NZ80GpHkC0mxAmgOQde3t44W57Z39t_REYBW8Pwj80MXUw_p_sM0ES4ipSzCgz5v9f048AGW3nX4</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Mostafavi, Seyed Hossein</creator><creator>Aghajani, Mahdi</creator><creator>Amani, Amir</creator><creator>Darvishi, Behrad</creator><creator>Noori Koopaei, Mona</creator><creator>Pashazadeh, Ali Mahmoud</creator><creator>Maghazei, Mohamad Shahab</creator><creator>Alvandifar, Farhad</creator><creator>Nabipour, Iraj</creator><creator>Karami, Fahimeh</creator><creator>Assadi, Majid</creator><creator>Dinarvand, Rassoul</creator><general>Informa Healthcare</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks</title><author>Mostafavi, Seyed Hossein ; Aghajani, Mahdi ; Amani, Amir ; Darvishi, Behrad ; Noori Koopaei, Mona ; Pashazadeh, Ali Mahmoud ; Maghazei, Mohamad Shahab ; Alvandifar, Farhad ; Nabipour, Iraj ; Karami, Fahimeh ; Assadi, Majid ; Dinarvand, Rassoul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-53abc457a5d8501c27f5d9c557c3c21c91c56de5b2bd999d7caa5898a1d08d703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial neural networks</topic><topic>hydrophobic drug</topic><topic>optimization</topic><topic>paclitaxel</topic><topic>particle size</topic><topic>passive targeting</topic><topic>PLGA-PMBH nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostafavi, Seyed Hossein</creatorcontrib><creatorcontrib>Aghajani, Mahdi</creatorcontrib><creatorcontrib>Amani, Amir</creatorcontrib><creatorcontrib>Darvishi, Behrad</creatorcontrib><creatorcontrib>Noori Koopaei, Mona</creatorcontrib><creatorcontrib>Pashazadeh, Ali Mahmoud</creatorcontrib><creatorcontrib>Maghazei, Mohamad Shahab</creatorcontrib><creatorcontrib>Alvandifar, Farhad</creatorcontrib><creatorcontrib>Nabipour, Iraj</creatorcontrib><creatorcontrib>Karami, Fahimeh</creatorcontrib><creatorcontrib>Assadi, Majid</creatorcontrib><creatorcontrib>Dinarvand, Rassoul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical development and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostafavi, Seyed Hossein</au><au>Aghajani, Mahdi</au><au>Amani, Amir</au><au>Darvishi, Behrad</au><au>Noori Koopaei, Mona</au><au>Pashazadeh, Ali Mahmoud</au><au>Maghazei, Mohamad Shahab</au><au>Alvandifar, Farhad</au><au>Nabipour, Iraj</au><au>Karami, Fahimeh</au><au>Assadi, Majid</au><au>Dinarvand, Rassoul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks</atitle><jtitle>Pharmaceutical development and technology</jtitle><addtitle>Pharm Dev Technol</addtitle><date>2015-11</date><risdate>2015</risdate><volume>20</volume><issue>7</issue><spage>845</spage><epage>853</epage><pages>845-853</pages><issn>1083-7450</issn><eissn>1097-9867</eissn><abstract>The aim of this study was to find a model using artificial neural networks (ANNs) to predict PLGA-PMBH nanoparticles (NPs) size in preparation by modified nanoprecipitation. The input variables were polymer content, drug content, power of sonication and ratio of organic/aqueous phase (i.e. acetone/water), while the NPs size of PLGA-PMBH was assumed as the output variable. Forty samples of PLGA-PMBH NPs containing anticancer drug (i.e. paclitaxel) were synthesized by changing the variable factors in the experiments. The data modeling were performed using ANNs. The effects of input variables (namely, polymer content, drug content, power of sonication and ratio of acetone/water) on the output variables were evaluated using the 3D graphs obtained after modeling. Contrasting the 3D graphs from the generated model revealed that the amount of polymer (PLGA-PMBH) and drug content (PTX) have direct relation with the size of polymeric NPs in the process. In addition, it was illustrated that the ratio of acetone/water was the most important factor affecting the particle size of PLGA-PMBH NPs provided by solvent evaporation technique. Also, it was found that increasing the sonication power (up to a certain amount) indirectly affects the polymeric NPs size however it was directly affected in higher values.</abstract><cop>England</cop><pub>Informa Healthcare</pub><pmid>24980221</pmid><doi>10.3109/10837450.2014.930487</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-7450
ispartof Pharmaceutical development and technology, 2015-11, Vol.20 (7), p.845-853
issn 1083-7450
1097-9867
language eng
recordid cdi_pubmed_primary_24980221
source EBSCOhost Business Source Complete
subjects Artificial neural networks
hydrophobic drug
optimization
paclitaxel
particle size
passive targeting
PLGA-PMBH nanoparticles
title Optimization of paclitaxel-loaded poly (d,l-lactide-co-glycolide-N-p-maleimido benzoic hydrazide) nanoparticles size using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20paclitaxel-loaded%20poly%20(d,l-lactide-co-glycolide-N-p-maleimido%20benzoic%20hydrazide)%20nanoparticles%20size%20using%20artificial%20neural%20networks&rft.jtitle=Pharmaceutical%20development%20and%20technology&rft.au=Mostafavi,%20Seyed%20Hossein&rft.date=2015-11&rft.volume=20&rft.issue=7&rft.spage=845&rft.epage=853&rft.pages=845-853&rft.issn=1083-7450&rft.eissn=1097-9867&rft_id=info:doi/10.3109/10837450.2014.930487&rft_dat=%3Cproquest_pubme%3E1826596814%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826596814&rft_id=info:pmid/24980221&rfr_iscdi=true