Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization

We propose a general information-theoretic approach to semi-supervised metric learning called (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2014-08, Vol.26 (8), p.1717-1762
Hauptverfasser: Niu, Gang, Dai, Bo, Yamada, Makoto, Sugiyama, Masashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1762
container_issue 8
container_start_page 1717
container_title Neural computation
container_volume 26
creator Niu, Gang
Dai, Bo
Yamada, Makoto
Sugiyama, Masashi
description We propose a general information-theoretic approach to semi-supervised metric learning called (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For metric learning, entropy regularization improves manifold regularization by considering the dissimilarity information of unlabeled data in the unsupervised part, and hence it allows the supervised and unsupervised parts to be integrated in a natural and meaningful way. Moreover, we regularize by trace-norm regularization to encourage low-dimensional projections associated with the distance metric. The nonconvex optimization problem of SERAPH could be solved efficiently and stably by either a gradient projection algorithm or an EM-like iterative algorithm whose M-step is convex. Experiments demonstrate that compares favorably with many well-known metric learning methods, and the learned Mahalanobis distance possesses high discriminability even under noisy environments.
doi_str_mv 10.1162/NECO_a_00614
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24877733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620035278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-291690406a234bfc19eb6036e47cec08c7d604824fe39e08486edae28249e7f43</originalsourceid><addsrcrecordid>eNqFkctrFEEQhxtRzBq9eZYBLzk4Wv2YftyUZdXAJpE8wFvT21sTO-xMT7pnFpK_3plslEUCngqqPr6q7h8hbyl8pFSyT6eL-Zl1FkBS8YzMaMWh1Fr_fE5moI0plZTqgLzK-QYmBqqX5IAJrZTifEZ-HLd1TI3rQ2zLy18YE_bBFxfYhPJi6DBtQ8Z1cYJ9GttLdKkN7XWxDa5YtH2K3V1xjtfDxqVw_yB5TV7UbpPxzWM9JFdfF5fz7-Xy7Nvx_Muy9BXovmSGSgMCpGNcrGpPDa4kcIlCefSgvVpLEJqJGrlB0EJLXDtkY8egqgU_JEc7b5fi7YC5t03IHjcb12Icsh2_BoBXTOn_o5VgcryKT9b3_6A3cUjt-JCJqjhVwkzUhx3lU8w5YW27FBqX7iwFO4Vi90MZ8XeP0mHV4Pov_CeFEfi8A5qwt7BFH7dMBm05cC6kZcDoqLdg7H3oHuZ7O46eUDx5zm9ipqgF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545317494</pqid></control><display><type>article</type><title>Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Niu, Gang ; Dai, Bo ; Yamada, Makoto ; Sugiyama, Masashi</creator><creatorcontrib>Niu, Gang ; Dai, Bo ; Yamada, Makoto ; Sugiyama, Masashi</creatorcontrib><description>We propose a general information-theoretic approach to semi-supervised metric learning called (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For metric learning, entropy regularization improves manifold regularization by considering the dissimilarity information of unlabeled data in the unsupervised part, and hence it allows the supervised and unsupervised parts to be integrated in a natural and meaningful way. Moreover, we regularize by trace-norm regularization to encourage low-dimensional projections associated with the distance metric. The nonconvex optimization problem of SERAPH could be solved efficiently and stably by either a gradient projection algorithm or an EM-like iterative algorithm whose M-step is convex. Experiments demonstrate that compares favorably with many well-known metric learning methods, and the learned Mahalanobis distance possesses high discriminability even under noisy environments.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00614</identifier><identifier>PMID: 24877733</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Artificial Intelligence ; Brain ; Comparative analysis ; Computation ; Entropy ; Entropy (Information theory) ; Information Theory ; Learning ; Letters ; Manifolds ; Optimization ; Optimization algorithms ; Projection ; Regularization</subject><ispartof>Neural computation, 2014-08, Vol.26 (8), p.1717-1762</ispartof><rights>Copyright MIT Press Journals Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-291690406a234bfc19eb6036e47cec08c7d604824fe39e08486edae28249e7f43</citedby><cites>FETCH-LOGICAL-c508t-291690406a234bfc19eb6036e47cec08c7d604824fe39e08486edae28249e7f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00614$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24877733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Gang</creatorcontrib><creatorcontrib>Dai, Bo</creatorcontrib><creatorcontrib>Yamada, Makoto</creatorcontrib><creatorcontrib>Sugiyama, Masashi</creatorcontrib><title>Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>We propose a general information-theoretic approach to semi-supervised metric learning called (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For metric learning, entropy regularization improves manifold regularization by considering the dissimilarity information of unlabeled data in the unsupervised part, and hence it allows the supervised and unsupervised parts to be integrated in a natural and meaningful way. Moreover, we regularize by trace-norm regularization to encourage low-dimensional projections associated with the distance metric. The nonconvex optimization problem of SERAPH could be solved efficiently and stably by either a gradient projection algorithm or an EM-like iterative algorithm whose M-step is convex. Experiments demonstrate that compares favorably with many well-known metric learning methods, and the learned Mahalanobis distance possesses high discriminability even under noisy environments.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain</subject><subject>Comparative analysis</subject><subject>Computation</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Information Theory</subject><subject>Learning</subject><subject>Letters</subject><subject>Manifolds</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Projection</subject><subject>Regularization</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctrFEEQhxtRzBq9eZYBLzk4Wv2YftyUZdXAJpE8wFvT21sTO-xMT7pnFpK_3plslEUCngqqPr6q7h8hbyl8pFSyT6eL-Zl1FkBS8YzMaMWh1Fr_fE5moI0plZTqgLzK-QYmBqqX5IAJrZTifEZ-HLd1TI3rQ2zLy18YE_bBFxfYhPJi6DBtQ8Z1cYJ9GttLdKkN7XWxDa5YtH2K3V1xjtfDxqVw_yB5TV7UbpPxzWM9JFdfF5fz7-Xy7Nvx_Muy9BXovmSGSgMCpGNcrGpPDa4kcIlCefSgvVpLEJqJGrlB0EJLXDtkY8egqgU_JEc7b5fi7YC5t03IHjcb12Icsh2_BoBXTOn_o5VgcryKT9b3_6A3cUjt-JCJqjhVwkzUhx3lU8w5YW27FBqX7iwFO4Vi90MZ8XeP0mHV4Pov_CeFEfi8A5qwt7BFH7dMBm05cC6kZcDoqLdg7H3oHuZ7O46eUDx5zm9ipqgF</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Niu, Gang</creator><creator>Dai, Bo</creator><creator>Yamada, Makoto</creator><creator>Sugiyama, Masashi</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7U5</scope></search><sort><creationdate>20140801</creationdate><title>Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization</title><author>Niu, Gang ; Dai, Bo ; Yamada, Makoto ; Sugiyama, Masashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-291690406a234bfc19eb6036e47cec08c7d604824fe39e08486edae28249e7f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain</topic><topic>Comparative analysis</topic><topic>Computation</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Information Theory</topic><topic>Learning</topic><topic>Letters</topic><topic>Manifolds</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Projection</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Gang</creatorcontrib><creatorcontrib>Dai, Bo</creatorcontrib><creatorcontrib>Yamada, Makoto</creatorcontrib><creatorcontrib>Sugiyama, Masashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Gang</au><au>Dai, Bo</au><au>Yamada, Makoto</au><au>Sugiyama, Masashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>26</volume><issue>8</issue><spage>1717</spage><epage>1762</epage><pages>1717-1762</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>We propose a general information-theoretic approach to semi-supervised metric learning called (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For metric learning, entropy regularization improves manifold regularization by considering the dissimilarity information of unlabeled data in the unsupervised part, and hence it allows the supervised and unsupervised parts to be integrated in a natural and meaningful way. Moreover, we regularize by trace-norm regularization to encourage low-dimensional projections associated with the distance metric. The nonconvex optimization problem of SERAPH could be solved efficiently and stably by either a gradient projection algorithm or an EM-like iterative algorithm whose M-step is convex. Experiments demonstrate that compares favorably with many well-known metric learning methods, and the learned Mahalanobis distance possesses high discriminability even under noisy environments.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>24877733</pmid><doi>10.1162/NECO_a_00614</doi><tpages>46</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2014-08, Vol.26 (8), p.1717-1762
issn 0899-7667
1530-888X
language eng
recordid cdi_pubmed_primary_24877733
source MEDLINE; MIT Press Journals
subjects Algorithms
Artificial Intelligence
Brain
Comparative analysis
Computation
Entropy
Entropy (Information theory)
Information Theory
Learning
Letters
Manifolds
Optimization
Optimization algorithms
Projection
Regularization
title Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-Theoretic%20Semi-Supervised%20Metric%20Learning%20via%20Entropy%20Regularization&rft.jtitle=Neural%20computation&rft.au=Niu,%20Gang&rft.date=2014-08-01&rft.volume=26&rft.issue=8&rft.spage=1717&rft.epage=1762&rft.pages=1717-1762&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/NECO_a_00614&rft_dat=%3Cproquest_pubme%3E1620035278%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545317494&rft_id=info:pmid/24877733&rfr_iscdi=true