evolutionary appearance of non‐cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β–glucosidases resulting from a crucial amino acid substitution

Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α–hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β–glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non‐cy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2014-07, Vol.79 (2), p.299-311
Hauptverfasser: Lai, Daniela, Abou Hachem, Maher, Robson, Fran, Olsen, Carl Erik, Wang, Trevor L, Møller, Birger L, Takos, Adam M, Rook, Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 2
container_start_page 299
container_title The Plant journal : for cell and molecular biology
container_volume 79
creator Lai, Daniela
Abou Hachem, Maher
Robson, Fran
Olsen, Carl Erik
Wang, Trevor L
Møller, Birger L
Takos, Adam M
Rook, Fred
description Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α–hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β–glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non‐cyanogenic γ‐ and β–hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only β–glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site‐directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non‐flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic β–glucosidase, resembling BGD2, and required no more than a single amino acid substitution.
doi_str_mv 10.1111/tpj.12561
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24861854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TPJ12561</sourcerecordid><originalsourceid>FETCH-LOGICAL-f3801-369d5278d7a01579ff47a9a7d056e7c21a9ff3d108fb8d811302f9122431fd033</originalsourceid><addsrcrecordid>eNo9UU1u1DAUthCIDoUFFwBfIK2fnd8lqoBSjVQkWold9Ca2U1eJHdlOIV31CEjchIOw7ronqWeG4oXfk_392N8j5C2wI0jrOE7XR8CLEp6RFYiyyASI78_JijUly6oc-AF5FcI1Y1CJMn9JDnhel1AX-Yrcqxs3zNE4i36hOE0KPdpOUaepdfbh7le3oHW9sqajV4v07udiTfRmULQf5s4FI1WgxtJ4pejaxTnQBE67CRS7zo0TWqMk3Sw7RJg3IXqMqZtUZ3Awt7h13_pNyXpwvUvkv38e7n4_6WNIDl6FeYjG9lR7N1KknZ-3fIqjsS5ZGbkXN3H3ndfkhcYhqDf_6iG5_PTx4uQ0W59__nLyYZ1pUTPIRNnIgle1rJBBUTVa5xU2WElWlKrqOGA6EhJYrTe1rAEE47oBznMBWjIhDsm7ve40b0Yl28mbMUXZPkWcAMd7wI-U2fL_Hli7nV2bZtfuZtdefD3bNYnxfs_Q6FrsvQnt5TeenscYSwUK8QhBBp8X</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>evolutionary appearance of non‐cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β–glucosidases resulting from a crucial amino acid substitution</title><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lai, Daniela ; Abou Hachem, Maher ; Robson, Fran ; Olsen, Carl Erik ; Wang, Trevor L ; Møller, Birger L ; Takos, Adam M ; Rook, Fred</creator><creatorcontrib>Lai, Daniela ; Abou Hachem, Maher ; Robson, Fran ; Olsen, Carl Erik ; Wang, Trevor L ; Møller, Birger L ; Takos, Adam M ; Rook, Fred</creatorcontrib><description>Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α–hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β–glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non‐cyanogenic γ‐ and β–hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only β–glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site‐directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non‐flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic β–glucosidase, resembling BGD2, and required no more than a single amino acid substitution.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.12561</identifier><identifier>PMID: 24861854</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>Amino Acid Substitution ; beta-glucosidase ; beta-Glucosidase - metabolism ; binding sites ; biosynthesis ; cyanogenesis ; enzyme evolution ; genes ; glucosides ; Glycosides - metabolism ; hydrogen cyanide ; hydroxynitrile glucosides ; leaves ; legumes ; Lotus - enzymology ; Lotus - metabolism ; Lotus burttii ; Lotus corniculatus ; Lotus corniculatus var. japonicus ; Lotus filicaulis ; Lotus japonicus ; Lotus krylovii ; Molecular Sequence Data ; mutagenesis ; Plant Proteins - genetics ; Plant Proteins - metabolism ; rhodiocyanosides ; valine ; β–glucosidase</subject><ispartof>The Plant journal : for cell and molecular biology, 2014-07, Vol.79 (2), p.299-311</ispartof><rights>2014 The Authors The Plant Journal © 2014 John Wiley &amp; Sons Ltd</rights><rights>2014 The Authors The Plant Journal © 2014 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.12561$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.12561$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24861854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Daniela</creatorcontrib><creatorcontrib>Abou Hachem, Maher</creatorcontrib><creatorcontrib>Robson, Fran</creatorcontrib><creatorcontrib>Olsen, Carl Erik</creatorcontrib><creatorcontrib>Wang, Trevor L</creatorcontrib><creatorcontrib>Møller, Birger L</creatorcontrib><creatorcontrib>Takos, Adam M</creatorcontrib><creatorcontrib>Rook, Fred</creatorcontrib><title>evolutionary appearance of non‐cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β–glucosidases resulting from a crucial amino acid substitution</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α–hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β–glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non‐cyanogenic γ‐ and β–hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only β–glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site‐directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non‐flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic β–glucosidase, resembling BGD2, and required no more than a single amino acid substitution.</description><subject>Amino Acid Substitution</subject><subject>beta-glucosidase</subject><subject>beta-Glucosidase - metabolism</subject><subject>binding sites</subject><subject>biosynthesis</subject><subject>cyanogenesis</subject><subject>enzyme evolution</subject><subject>genes</subject><subject>glucosides</subject><subject>Glycosides - metabolism</subject><subject>hydrogen cyanide</subject><subject>hydroxynitrile glucosides</subject><subject>leaves</subject><subject>legumes</subject><subject>Lotus - enzymology</subject><subject>Lotus - metabolism</subject><subject>Lotus burttii</subject><subject>Lotus corniculatus</subject><subject>Lotus corniculatus var. japonicus</subject><subject>Lotus filicaulis</subject><subject>Lotus japonicus</subject><subject>Lotus krylovii</subject><subject>Molecular Sequence Data</subject><subject>mutagenesis</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>rhodiocyanosides</subject><subject>valine</subject><subject>β–glucosidase</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9UU1u1DAUthCIDoUFFwBfIK2fnd8lqoBSjVQkWold9Ca2U1eJHdlOIV31CEjchIOw7ronqWeG4oXfk_392N8j5C2wI0jrOE7XR8CLEp6RFYiyyASI78_JijUly6oc-AF5FcI1Y1CJMn9JDnhel1AX-Yrcqxs3zNE4i36hOE0KPdpOUaepdfbh7le3oHW9sqajV4v07udiTfRmULQf5s4FI1WgxtJ4pejaxTnQBE67CRS7zo0TWqMk3Sw7RJg3IXqMqZtUZ3Awt7h13_pNyXpwvUvkv38e7n4_6WNIDl6FeYjG9lR7N1KknZ-3fIqjsS5ZGbkXN3H3ndfkhcYhqDf_6iG5_PTx4uQ0W59__nLyYZ1pUTPIRNnIgle1rJBBUTVa5xU2WElWlKrqOGA6EhJYrTe1rAEE47oBznMBWjIhDsm7ve40b0Yl28mbMUXZPkWcAMd7wI-U2fL_Hli7nV2bZtfuZtdefD3bNYnxfs_Q6FrsvQnt5TeenscYSwUK8QhBBp8X</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Lai, Daniela</creator><creator>Abou Hachem, Maher</creator><creator>Robson, Fran</creator><creator>Olsen, Carl Erik</creator><creator>Wang, Trevor L</creator><creator>Møller, Birger L</creator><creator>Takos, Adam M</creator><creator>Rook, Fred</creator><general>Blackwell Science</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>201407</creationdate><title>evolutionary appearance of non‐cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β–glucosidases resulting from a crucial amino acid substitution</title><author>Lai, Daniela ; Abou Hachem, Maher ; Robson, Fran ; Olsen, Carl Erik ; Wang, Trevor L ; Møller, Birger L ; Takos, Adam M ; Rook, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f3801-369d5278d7a01579ff47a9a7d056e7c21a9ff3d108fb8d811302f9122431fd033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Substitution</topic><topic>beta-glucosidase</topic><topic>beta-Glucosidase - metabolism</topic><topic>binding sites</topic><topic>biosynthesis</topic><topic>cyanogenesis</topic><topic>enzyme evolution</topic><topic>genes</topic><topic>glucosides</topic><topic>Glycosides - metabolism</topic><topic>hydrogen cyanide</topic><topic>hydroxynitrile glucosides</topic><topic>leaves</topic><topic>legumes</topic><topic>Lotus - enzymology</topic><topic>Lotus - metabolism</topic><topic>Lotus burttii</topic><topic>Lotus corniculatus</topic><topic>Lotus corniculatus var. japonicus</topic><topic>Lotus filicaulis</topic><topic>Lotus japonicus</topic><topic>Lotus krylovii</topic><topic>Molecular Sequence Data</topic><topic>mutagenesis</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>rhodiocyanosides</topic><topic>valine</topic><topic>β–glucosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Daniela</creatorcontrib><creatorcontrib>Abou Hachem, Maher</creatorcontrib><creatorcontrib>Robson, Fran</creatorcontrib><creatorcontrib>Olsen, Carl Erik</creatorcontrib><creatorcontrib>Wang, Trevor L</creatorcontrib><creatorcontrib>Møller, Birger L</creatorcontrib><creatorcontrib>Takos, Adam M</creatorcontrib><creatorcontrib>Rook, Fred</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Daniela</au><au>Abou Hachem, Maher</au><au>Robson, Fran</au><au>Olsen, Carl Erik</au><au>Wang, Trevor L</au><au>Møller, Birger L</au><au>Takos, Adam M</au><au>Rook, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>evolutionary appearance of non‐cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β–glucosidases resulting from a crucial amino acid substitution</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2014-07</date><risdate>2014</risdate><volume>79</volume><issue>2</issue><spage>299</spage><epage>311</epage><pages>299-311</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α–hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β–glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non‐cyanogenic γ‐ and β–hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only β–glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site‐directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non‐flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic β–glucosidase, resembling BGD2, and required no more than a single amino acid substitution.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>24861854</pmid><doi>10.1111/tpj.12561</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2014-07, Vol.79 (2), p.299-311
issn 0960-7412
1365-313X
language eng
recordid cdi_pubmed_primary_24861854
source MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amino Acid Substitution
beta-glucosidase
beta-Glucosidase - metabolism
binding sites
biosynthesis
cyanogenesis
enzyme evolution
genes
glucosides
Glycosides - metabolism
hydrogen cyanide
hydroxynitrile glucosides
leaves
legumes
Lotus - enzymology
Lotus - metabolism
Lotus burttii
Lotus corniculatus
Lotus corniculatus var. japonicus
Lotus filicaulis
Lotus japonicus
Lotus krylovii
Molecular Sequence Data
mutagenesis
Plant Proteins - genetics
Plant Proteins - metabolism
rhodiocyanosides
valine
β–glucosidase
title evolutionary appearance of non‐cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β–glucosidases resulting from a crucial amino acid substitution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=evolutionary%20appearance%20of%20non%E2%80%90cyanogenic%20hydroxynitrile%20glucosides%20in%20the%20Lotus%20genus%20is%20accompanied%20by%20the%20substrate%20specialization%20of%20paralogous%20%CE%B2%E2%80%93glucosidases%20resulting%20from%20a%20crucial%20amino%20acid%20substitution&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Lai,%20Daniela&rft.date=2014-07&rft.volume=79&rft.issue=2&rft.spage=299&rft.epage=311&rft.pages=299-311&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.12561&rft_dat=%3Cwiley_pubme%3ETPJ12561%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24861854&rfr_iscdi=true