Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime

The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2014-03, Vol.24 (1), p.013118-013118
Hauptverfasser: Carati, A., Benfenati, F., Maiocchi, A., Zuin, M., Galgani, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 013118
container_issue 1
container_start_page 013118
container_title Chaos (Woodbury, N.Y.)
container_volume 24
creator Carati, A.
Benfenati, F.
Maiocchi, A.
Zuin, M.
Galgani, L.
description The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω p /ω c between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω p /ω c in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.
doi_str_mv 10.1063/1.4865255
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24697380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1513050768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-bdf597d58c26a92812c0a75f694331e9567bf51aa95fd2ef6093f88e23fcb2d73</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgiveFLyAFNypUc2naxJ0M3kB0owtXIZOeTKNtU5tU0ae3w4y60lUO5OPnnB-hPYJPCM7ZKTnJRM4p5ytok2Ah0yIXdHU-8ywlHOMNtBXCM8aYUMbX0QbNclkwgTfR06TSPjrj4kcSqx5C5esycW3S6FkL0X1CmXS1Do0OZ8nd0EDvjK6TEQ51DHMYK0jeQb8kxg9d7drZ-DlzDeygNavrALvLdxs9Xl48TK7T2_urm8n5bWpYJmI6LS2XRcmFobmWVBBqsC64zWXGGAHJ82JqOdFacltSsDmWzAoBlFkzpWXBttHBIteH6FQYLwFTGd-2YKKilHKCiRzV4UJ1vX8dIETVuGCgrnULfgiKcMIwx2NxIz1aUNP7EHqwqutdo_sPRbCa962IWvY92v1l7DBtoPyR3wWP4HgB5ovp6Hz7b9qf-M33v1B1pWVfQaaWRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513050768</pqid></control><display><type>article</type><title>Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Carati, A. ; Benfenati, F. ; Maiocchi, A. ; Zuin, M. ; Galgani, L.</creator><creatorcontrib>Carati, A. ; Benfenati, F. ; Maiocchi, A. ; Zuin, M. ; Galgani, L.</creatorcontrib><description>The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω p /ω c between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω p /ω c in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4865255</identifier><identifier>PMID: 24697380</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; CALCULATION METHODS ; CHAOS THEORY ; CYCLOTRON FREQUENCY ; ELECTRON DENSITY ; ELECTRONS ; MAGNETIC FIELDS ; MAGNETIZATION ; PLASMA ; PLASMA CONFINEMENT</subject><ispartof>Chaos (Woodbury, N.Y.), 2014-03, Vol.24 (1), p.013118-013118</ispartof><rights>AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-bdf597d58c26a92812c0a75f694331e9567bf51aa95fd2ef6093f88e23fcb2d73</citedby><cites>FETCH-LOGICAL-c348t-bdf597d58c26a92812c0a75f694331e9567bf51aa95fd2ef6093f88e23fcb2d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,791,882,4498,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24697380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22251019$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carati, A.</creatorcontrib><creatorcontrib>Benfenati, F.</creatorcontrib><creatorcontrib>Maiocchi, A.</creatorcontrib><creatorcontrib>Zuin, M.</creatorcontrib><creatorcontrib>Galgani, L.</creatorcontrib><title>Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω p /ω c between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω p /ω c in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>CALCULATION METHODS</subject><subject>CHAOS THEORY</subject><subject>CYCLOTRON FREQUENCY</subject><subject>ELECTRON DENSITY</subject><subject>ELECTRONS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIZATION</subject><subject>PLASMA</subject><subject>PLASMA CONFINEMENT</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgiveFLyAFNypUc2naxJ0M3kB0owtXIZOeTKNtU5tU0ae3w4y60lUO5OPnnB-hPYJPCM7ZKTnJRM4p5ytok2Ah0yIXdHU-8ywlHOMNtBXCM8aYUMbX0QbNclkwgTfR06TSPjrj4kcSqx5C5esycW3S6FkL0X1CmXS1Do0OZ8nd0EDvjK6TEQ51DHMYK0jeQb8kxg9d7drZ-DlzDeygNavrALvLdxs9Xl48TK7T2_urm8n5bWpYJmI6LS2XRcmFobmWVBBqsC64zWXGGAHJ82JqOdFacltSsDmWzAoBlFkzpWXBttHBIteH6FQYLwFTGd-2YKKilHKCiRzV4UJ1vX8dIETVuGCgrnULfgiKcMIwx2NxIz1aUNP7EHqwqutdo_sPRbCa962IWvY92v1l7DBtoPyR3wWP4HgB5ovp6Hz7b9qf-M33v1B1pWVfQaaWRw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Carati, A.</creator><creator>Benfenati, F.</creator><creator>Maiocchi, A.</creator><creator>Zuin, M.</creator><creator>Galgani, L.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140301</creationdate><title>Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime</title><author>Carati, A. ; Benfenati, F. ; Maiocchi, A. ; Zuin, M. ; Galgani, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-bdf597d58c26a92812c0a75f694331e9567bf51aa95fd2ef6093f88e23fcb2d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>CALCULATION METHODS</topic><topic>CHAOS THEORY</topic><topic>CYCLOTRON FREQUENCY</topic><topic>ELECTRON DENSITY</topic><topic>ELECTRONS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIZATION</topic><topic>PLASMA</topic><topic>PLASMA CONFINEMENT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carati, A.</creatorcontrib><creatorcontrib>Benfenati, F.</creatorcontrib><creatorcontrib>Maiocchi, A.</creatorcontrib><creatorcontrib>Zuin, M.</creatorcontrib><creatorcontrib>Galgani, L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carati, A.</au><au>Benfenati, F.</au><au>Maiocchi, A.</au><au>Zuin, M.</au><au>Galgani, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>013118</spage><epage>013118</epage><pages>013118-013118</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω p /ω c between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω p /ω c in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.</abstract><cop>United States</cop><pmid>24697380</pmid><doi>10.1063/1.4865255</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2014-03, Vol.24 (1), p.013118-013118
issn 1054-1500
1089-7682
language eng
recordid cdi_pubmed_primary_24697380
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
CALCULATION METHODS
CHAOS THEORY
CYCLOTRON FREQUENCY
ELECTRON DENSITY
ELECTRONS
MAGNETIC FIELDS
MAGNETIZATION
PLASMA
PLASMA CONFINEMENT
title Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaoticity%20threshold%20in%20magnetized%20plasmas:%20Numerical%20results%20in%20the%20weak%20coupling%20regime&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Carati,%20A.&rft.date=2014-03-01&rft.volume=24&rft.issue=1&rft.spage=013118&rft.epage=013118&rft.pages=013118-013118&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4865255&rft_dat=%3Cproquest_pubme%3E1513050768%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513050768&rft_id=info:pmid/24697380&rfr_iscdi=true