Simulation of synthetic gecko arrays shearing on rough surfaces

To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2014-06, Vol.11 (95), p.20140021-20140021
Hauptverfasser: Gillies, Andrew G., Fearing, Ronald S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20140021
container_issue 95
container_start_page 20140021
container_title Journal of the Royal Society interface
container_volume 11
creator Gillies, Andrew G.
Fearing, Ronald S.
description To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features.
doi_str_mv 10.1098/rsif.2014.0021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24694893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1513050666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658t-10f783adbeb15c648fba948e0033b94778c8207ec52b19004091a74eba1369583</originalsourceid><addsrcrecordid>eNp9kM1v1DAQxSMEoqVw5Yhy5JLFjr8vIFRYqLQIiZaK28hxJ7tus_FiJxXhr8erlBUVgpPHmje_9_SK4jklC0qMfhWTbxc1oXxBSE0fFMdU8boSUtYPD7M2R8WTlK4JYYoJ8bg4qrk0XBt2XLw599uxs4MPfRnaMk39sMHBu3KN7iaUNkY7pTJt0Ebfr8usimFcb8o0xtY6TE-LR63tEj67e0-Kr8v3F6cfq9XnD2enb1eVk0IPFSWt0sxeNdhQ4STXbWNzAsyRWGO4Utrpmih0om6oIYQTQ63i2FjKpBGanRSvZ-5ubLZ45bAfou1gF_3WxgmC9XB_0_sNrMMtcEJkzWkGvLwDxPB9xDTA1ieHXWd7DGMCKigjgkgps3QxS10MKUVsDzaUwL512LcO-9Zh33o-ePFnuIP8d81ZwGZBDFNuKTiPwwTXYYx9_v4bi_-7-nJ-tryl1BsBRDNKJJNcwU-_mzmUgk9pRMj7--C_farZx6cBfxzS23gDUjEl4FJzeHexYvrTtyVcsl-z8sCB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513050666</pqid></control><display><type>article</type><title>Simulation of synthetic gecko arrays shearing on rough surfaces</title><source>MEDLINE</source><source>PubMed Central</source><creator>Gillies, Andrew G. ; Fearing, Ronald S.</creator><creatorcontrib>Gillies, Andrew G. ; Fearing, Ronald S.</creatorcontrib><description>To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2014.0021</identifier><identifier>PMID: 24694893</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adhesives - chemistry ; Animals ; Bioinspired Adhesion ; Friction ; Gecko ; Lizards ; Shear ; Shear Strength ; Sliding ; Surface Properties</subject><ispartof>Journal of the Royal Society interface, 2014-06, Vol.11 (95), p.20140021-20140021</ispartof><rights>2014 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2014 The Author(s) Published by the Royal Society. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c658t-10f783adbeb15c648fba948e0033b94778c8207ec52b19004091a74eba1369583</citedby><cites>FETCH-LOGICAL-c658t-10f783adbeb15c648fba948e0033b94778c8207ec52b19004091a74eba1369583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006241/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006241/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24694893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gillies, Andrew G.</creatorcontrib><creatorcontrib>Fearing, Ronald S.</creatorcontrib><title>Simulation of synthetic gecko arrays shearing on rough surfaces</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features.</description><subject>Adhesives - chemistry</subject><subject>Animals</subject><subject>Bioinspired Adhesion</subject><subject>Friction</subject><subject>Gecko</subject><subject>Lizards</subject><subject>Shear</subject><subject>Shear Strength</subject><subject>Sliding</subject><subject>Surface Properties</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1v1DAQxSMEoqVw5Yhy5JLFjr8vIFRYqLQIiZaK28hxJ7tus_FiJxXhr8erlBUVgpPHmje_9_SK4jklC0qMfhWTbxc1oXxBSE0fFMdU8boSUtYPD7M2R8WTlK4JYYoJ8bg4qrk0XBt2XLw599uxs4MPfRnaMk39sMHBu3KN7iaUNkY7pTJt0Ebfr8usimFcb8o0xtY6TE-LR63tEj67e0-Kr8v3F6cfq9XnD2enb1eVk0IPFSWt0sxeNdhQ4STXbWNzAsyRWGO4Utrpmih0om6oIYQTQ63i2FjKpBGanRSvZ-5ubLZ45bAfou1gF_3WxgmC9XB_0_sNrMMtcEJkzWkGvLwDxPB9xDTA1ieHXWd7DGMCKigjgkgps3QxS10MKUVsDzaUwL512LcO-9Zh33o-ePFnuIP8d81ZwGZBDFNuKTiPwwTXYYx9_v4bi_-7-nJ-tryl1BsBRDNKJJNcwU-_mzmUgk9pRMj7--C_farZx6cBfxzS23gDUjEl4FJzeHexYvrTtyVcsl-z8sCB</recordid><startdate>20140606</startdate><enddate>20140606</enddate><creator>Gillies, Andrew G.</creator><creator>Fearing, Ronald S.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140606</creationdate><title>Simulation of synthetic gecko arrays shearing on rough surfaces</title><author>Gillies, Andrew G. ; Fearing, Ronald S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658t-10f783adbeb15c648fba948e0033b94778c8207ec52b19004091a74eba1369583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesives - chemistry</topic><topic>Animals</topic><topic>Bioinspired Adhesion</topic><topic>Friction</topic><topic>Gecko</topic><topic>Lizards</topic><topic>Shear</topic><topic>Shear Strength</topic><topic>Sliding</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillies, Andrew G.</creatorcontrib><creatorcontrib>Fearing, Ronald S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillies, Andrew G.</au><au>Fearing, Ronald S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of synthetic gecko arrays shearing on rough surfaces</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2014-06-06</date><risdate>2014</risdate><volume>11</volume><issue>95</issue><spage>20140021</spage><epage>20140021</epage><pages>20140021-20140021</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>24694893</pmid><doi>10.1098/rsif.2014.0021</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2014-06, Vol.11 (95), p.20140021-20140021
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmed_primary_24694893
source MEDLINE; PubMed Central
subjects Adhesives - chemistry
Animals
Bioinspired Adhesion
Friction
Gecko
Lizards
Shear
Shear Strength
Sliding
Surface Properties
title Simulation of synthetic gecko arrays shearing on rough surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20synthetic%20gecko%20arrays%20shearing%20on%20rough%20surfaces&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Gillies,%20Andrew%20G.&rft.date=2014-06-06&rft.volume=11&rft.issue=95&rft.spage=20140021&rft.epage=20140021&rft.pages=20140021-20140021&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2014.0021&rft_dat=%3Cproquest_pubme%3E1513050666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513050666&rft_id=info:pmid/24694893&rfr_iscdi=true