Simulation of synthetic gecko arrays shearing on rough surfaces
To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behav...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2014-06, Vol.11 (95), p.20140021-20140021 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20140021 |
---|---|
container_issue | 95 |
container_start_page | 20140021 |
container_title | Journal of the Royal Society interface |
container_volume | 11 |
creator | Gillies, Andrew G. Fearing, Ronald S. |
description | To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features. |
doi_str_mv | 10.1098/rsif.2014.0021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24694893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1513050666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658t-10f783adbeb15c648fba948e0033b94778c8207ec52b19004091a74eba1369583</originalsourceid><addsrcrecordid>eNp9kM1v1DAQxSMEoqVw5Yhy5JLFjr8vIFRYqLQIiZaK28hxJ7tus_FiJxXhr8erlBUVgpPHmje_9_SK4jklC0qMfhWTbxc1oXxBSE0fFMdU8boSUtYPD7M2R8WTlK4JYYoJ8bg4qrk0XBt2XLw599uxs4MPfRnaMk39sMHBu3KN7iaUNkY7pTJt0Ebfr8usimFcb8o0xtY6TE-LR63tEj67e0-Kr8v3F6cfq9XnD2enb1eVk0IPFSWt0sxeNdhQ4STXbWNzAsyRWGO4Utrpmih0om6oIYQTQ63i2FjKpBGanRSvZ-5ubLZ45bAfou1gF_3WxgmC9XB_0_sNrMMtcEJkzWkGvLwDxPB9xDTA1ieHXWd7DGMCKigjgkgps3QxS10MKUVsDzaUwL512LcO-9Zh33o-ePFnuIP8d81ZwGZBDFNuKTiPwwTXYYx9_v4bi_-7-nJ-tryl1BsBRDNKJJNcwU-_mzmUgk9pRMj7--C_farZx6cBfxzS23gDUjEl4FJzeHexYvrTtyVcsl-z8sCB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513050666</pqid></control><display><type>article</type><title>Simulation of synthetic gecko arrays shearing on rough surfaces</title><source>MEDLINE</source><source>PubMed Central</source><creator>Gillies, Andrew G. ; Fearing, Ronald S.</creator><creatorcontrib>Gillies, Andrew G. ; Fearing, Ronald S.</creatorcontrib><description>To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2014.0021</identifier><identifier>PMID: 24694893</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adhesives - chemistry ; Animals ; Bioinspired Adhesion ; Friction ; Gecko ; Lizards ; Shear ; Shear Strength ; Sliding ; Surface Properties</subject><ispartof>Journal of the Royal Society interface, 2014-06, Vol.11 (95), p.20140021-20140021</ispartof><rights>2014 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2014 The Author(s) Published by the Royal Society. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c658t-10f783adbeb15c648fba948e0033b94778c8207ec52b19004091a74eba1369583</citedby><cites>FETCH-LOGICAL-c658t-10f783adbeb15c648fba948e0033b94778c8207ec52b19004091a74eba1369583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006241/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006241/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24694893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gillies, Andrew G.</creatorcontrib><creatorcontrib>Fearing, Ronald S.</creatorcontrib><title>Simulation of synthetic gecko arrays shearing on rough surfaces</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features.</description><subject>Adhesives - chemistry</subject><subject>Animals</subject><subject>Bioinspired Adhesion</subject><subject>Friction</subject><subject>Gecko</subject><subject>Lizards</subject><subject>Shear</subject><subject>Shear Strength</subject><subject>Sliding</subject><subject>Surface Properties</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1v1DAQxSMEoqVw5Yhy5JLFjr8vIFRYqLQIiZaK28hxJ7tus_FiJxXhr8erlBUVgpPHmje_9_SK4jklC0qMfhWTbxc1oXxBSE0fFMdU8boSUtYPD7M2R8WTlK4JYYoJ8bg4qrk0XBt2XLw599uxs4MPfRnaMk39sMHBu3KN7iaUNkY7pTJt0Ebfr8usimFcb8o0xtY6TE-LR63tEj67e0-Kr8v3F6cfq9XnD2enb1eVk0IPFSWt0sxeNdhQ4STXbWNzAsyRWGO4Utrpmih0om6oIYQTQ63i2FjKpBGanRSvZ-5ubLZ45bAfou1gF_3WxgmC9XB_0_sNrMMtcEJkzWkGvLwDxPB9xDTA1ieHXWd7DGMCKigjgkgps3QxS10MKUVsDzaUwL512LcO-9Zh33o-ePFnuIP8d81ZwGZBDFNuKTiPwwTXYYx9_v4bi_-7-nJ-tryl1BsBRDNKJJNcwU-_mzmUgk9pRMj7--C_farZx6cBfxzS23gDUjEl4FJzeHexYvrTtyVcsl-z8sCB</recordid><startdate>20140606</startdate><enddate>20140606</enddate><creator>Gillies, Andrew G.</creator><creator>Fearing, Ronald S.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140606</creationdate><title>Simulation of synthetic gecko arrays shearing on rough surfaces</title><author>Gillies, Andrew G. ; Fearing, Ronald S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658t-10f783adbeb15c648fba948e0033b94778c8207ec52b19004091a74eba1369583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesives - chemistry</topic><topic>Animals</topic><topic>Bioinspired Adhesion</topic><topic>Friction</topic><topic>Gecko</topic><topic>Lizards</topic><topic>Shear</topic><topic>Shear Strength</topic><topic>Sliding</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillies, Andrew G.</creatorcontrib><creatorcontrib>Fearing, Ronald S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillies, Andrew G.</au><au>Fearing, Ronald S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of synthetic gecko arrays shearing on rough surfaces</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2014-06-06</date><risdate>2014</risdate><volume>11</volume><issue>95</issue><spage>20140021</spage><epage>20140021</epage><pages>20140021-20140021</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>24694893</pmid><doi>10.1098/rsif.2014.0021</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2014-06, Vol.11 (95), p.20140021-20140021 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmed_primary_24694893 |
source | MEDLINE; PubMed Central |
subjects | Adhesives - chemistry Animals Bioinspired Adhesion Friction Gecko Lizards Shear Shear Strength Sliding Surface Properties |
title | Simulation of synthetic gecko arrays shearing on rough surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20synthetic%20gecko%20arrays%20shearing%20on%20rough%20surfaces&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Gillies,%20Andrew%20G.&rft.date=2014-06-06&rft.volume=11&rft.issue=95&rft.spage=20140021&rft.epage=20140021&rft.pages=20140021-20140021&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2014.0021&rft_dat=%3Cproquest_pubme%3E1513050666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513050666&rft_id=info:pmid/24694893&rfr_iscdi=true |