Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel

Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (6), p.2128-2133
Hauptverfasser: Kim, Ilsoo, Warshel, Arieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2133
container_issue 6
container_start_page 2128
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Kim, Ilsoo
Warshel, Arieh
description Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of the above challenges by using our recently developed coarse-grained (CG) model in simulating the activation of the Kv1.2 channel. The CG model has allowed us to explore problems that cannot be fully addressed at present by microscopic simulations, while providing insights on some features that are not usually considered in continuum models, including the distribution of the electrolytes between the membrane and the electrodes during the activation process and thus the physical nature of the gating current. Here, we demonstrate that the CG model yields realistic gating charges and free energy landscapes that allow us to simulate the fluctuating gating current in the activation processes. Our ability to simulate the time dependence of the fast gating current allows us to reproduce the observed trend and provides a clear description of its relationship to the landscape involved in the activation process.
doi_str_mv 10.1073/pnas.1324014111
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24464485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23768828</jstor_id><sourcerecordid>23768828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-665b4f862b06200b36655870bb7b4fc0630ec62546232ff842ae8f6c2e0258913</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EoqVw5gSsxIXLpjP-Wu8FCUV8iUocoOJoeV3vxtHGDvZuJP57nKSkhQsnyzO_eXozj5DnCAuEhl1ug8kLZJQDckR8QM4RWqwlb-EhOQegTa045WfkSc5rAGiFgsfkjHIuOVfinPxYRpOyq4dkfHA3VfabeTSTjyFXsa-mlauG8g1DZeeUXJgqHw7VXRwnM7ja2MnvzFRGv-xwQSu7MiG48Sl51Jsxu2e37wW5_vD--_JTffX14-flu6vaCsqmWkrR8V5J2oGkAB0rBaEa6Lqm1C1IBs5KKrikjPZ92cU41UtLHVChWmQX5O1Rdzt3G3dji8NkRr1NfmPSLx2N1393gl_pIe40a6kEpYrAm1uBFH_OLk9647N142iCi3PWqICVsyE2_0d52yIX0IiCvv4HXcc5hXKJAwWiULJQl0fKpphzcv3JN4Le56v3-eq7fMvEy_vrnvg_gd4D9pMnOUQtNUW63_fFEVjnKaY7AdZIpQ79V8d-b6I2Q_JZX3-jgBKKBaDA2G-exrw_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499055076</pqid></control><display><type>article</type><title>Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Ilsoo ; Warshel, Arieh</creator><creatorcontrib>Kim, Ilsoo ; Warshel, Arieh</creatorcontrib><description>Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of the above challenges by using our recently developed coarse-grained (CG) model in simulating the activation of the Kv1.2 channel. The CG model has allowed us to explore problems that cannot be fully addressed at present by microscopic simulations, while providing insights on some features that are not usually considered in continuum models, including the distribution of the electrolytes between the membrane and the electrodes during the activation process and thus the physical nature of the gating current. Here, we demonstrate that the CG model yields realistic gating charges and free energy landscapes that allow us to simulate the fluctuating gating current in the activation processes. Our ability to simulate the time dependence of the fast gating current allows us to reproduce the observed trend and provides a clear description of its relationship to the landscape involved in the activation process.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1324014111</identifier><identifier>PMID: 24464485</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Depolarization ; Electric current ; Electric potential ; Electrodes ; Electrolytes ; energy ; Free energy ; Ion Channel Gating ; Ion channels ; Ions ; Kinetics ; Kv1.2 Potassium Channel - chemistry ; Kv1.2 Potassium Channel - physiology ; landscapes ; Membrane potential ; Membranes ; Modeling ; Models, Biological ; Models, Molecular ; simulation models ; Simulations ; uncertainty</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (6), p.2128-2133</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 11, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-665b4f862b06200b36655870bb7b4fc0630ec62546232ff842ae8f6c2e0258913</citedby><cites>FETCH-LOGICAL-c523t-665b4f862b06200b36655870bb7b4fc0630ec62546232ff842ae8f6c2e0258913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23768828$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23768828$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24464485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ilsoo</creatorcontrib><creatorcontrib>Warshel, Arieh</creatorcontrib><title>Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of the above challenges by using our recently developed coarse-grained (CG) model in simulating the activation of the Kv1.2 channel. The CG model has allowed us to explore problems that cannot be fully addressed at present by microscopic simulations, while providing insights on some features that are not usually considered in continuum models, including the distribution of the electrolytes between the membrane and the electrodes during the activation process and thus the physical nature of the gating current. Here, we demonstrate that the CG model yields realistic gating charges and free energy landscapes that allow us to simulate the fluctuating gating current in the activation processes. Our ability to simulate the time dependence of the fast gating current allows us to reproduce the observed trend and provides a clear description of its relationship to the landscape involved in the activation process.</description><subject>Biological Sciences</subject><subject>Depolarization</subject><subject>Electric current</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>energy</subject><subject>Free energy</subject><subject>Ion Channel Gating</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Kv1.2 Potassium Channel - chemistry</subject><subject>Kv1.2 Potassium Channel - physiology</subject><subject>landscapes</subject><subject>Membrane potential</subject><subject>Membranes</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>simulation models</subject><subject>Simulations</subject><subject>uncertainty</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EoqVw5gSsxIXLpjP-Wu8FCUV8iUocoOJoeV3vxtHGDvZuJP57nKSkhQsnyzO_eXozj5DnCAuEhl1ug8kLZJQDckR8QM4RWqwlb-EhOQegTa045WfkSc5rAGiFgsfkjHIuOVfinPxYRpOyq4dkfHA3VfabeTSTjyFXsa-mlauG8g1DZeeUXJgqHw7VXRwnM7ja2MnvzFRGv-xwQSu7MiG48Sl51Jsxu2e37wW5_vD--_JTffX14-flu6vaCsqmWkrR8V5J2oGkAB0rBaEa6Lqm1C1IBs5KKrikjPZ92cU41UtLHVChWmQX5O1Rdzt3G3dji8NkRr1NfmPSLx2N1393gl_pIe40a6kEpYrAm1uBFH_OLk9647N142iCi3PWqICVsyE2_0d52yIX0IiCvv4HXcc5hXKJAwWiULJQl0fKpphzcv3JN4Le56v3-eq7fMvEy_vrnvg_gd4D9pMnOUQtNUW63_fFEVjnKaY7AdZIpQ79V8d-b6I2Q_JZX3-jgBKKBaDA2G-exrw_</recordid><startdate>20140211</startdate><enddate>20140211</enddate><creator>Kim, Ilsoo</creator><creator>Warshel, Arieh</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140211</creationdate><title>Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel</title><author>Kim, Ilsoo ; Warshel, Arieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-665b4f862b06200b36655870bb7b4fc0630ec62546232ff842ae8f6c2e0258913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological Sciences</topic><topic>Depolarization</topic><topic>Electric current</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>energy</topic><topic>Free energy</topic><topic>Ion Channel Gating</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Kv1.2 Potassium Channel - chemistry</topic><topic>Kv1.2 Potassium Channel - physiology</topic><topic>landscapes</topic><topic>Membrane potential</topic><topic>Membranes</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>simulation models</topic><topic>Simulations</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ilsoo</creatorcontrib><creatorcontrib>Warshel, Arieh</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ilsoo</au><au>Warshel, Arieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-11</date><risdate>2014</risdate><volume>111</volume><issue>6</issue><spage>2128</spage><epage>2133</epage><pages>2128-2133</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of the above challenges by using our recently developed coarse-grained (CG) model in simulating the activation of the Kv1.2 channel. The CG model has allowed us to explore problems that cannot be fully addressed at present by microscopic simulations, while providing insights on some features that are not usually considered in continuum models, including the distribution of the electrolytes between the membrane and the electrodes during the activation process and thus the physical nature of the gating current. Here, we demonstrate that the CG model yields realistic gating charges and free energy landscapes that allow us to simulate the fluctuating gating current in the activation processes. Our ability to simulate the time dependence of the fast gating current allows us to reproduce the observed trend and provides a clear description of its relationship to the landscape involved in the activation process.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24464485</pmid><doi>10.1073/pnas.1324014111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (6), p.2128-2133
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_24464485
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Depolarization
Electric current
Electric potential
Electrodes
Electrolytes
energy
Free energy
Ion Channel Gating
Ion channels
Ions
Kinetics
Kv1.2 Potassium Channel - chemistry
Kv1.2 Potassium Channel - physiology
landscapes
Membrane potential
Membranes
Modeling
Models, Biological
Models, Molecular
simulation models
Simulations
uncertainty
title Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-grained%20simulations%20of%20the%20gating%20current%20in%20the%20voltage-activated%20Kv1.2%20channel&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim,%20Ilsoo&rft.date=2014-02-11&rft.volume=111&rft.issue=6&rft.spage=2128&rft.epage=2133&rft.pages=2128-2133&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1324014111&rft_dat=%3Cjstor_pubme%3E23768828%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499055076&rft_id=info:pmid/24464485&rft_jstor_id=23768828&rfr_iscdi=true