Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel
Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (6), p.2128-2133 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2133 |
---|---|
container_issue | 6 |
container_start_page | 2128 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Kim, Ilsoo Warshel, Arieh |
description | Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of the above challenges by using our recently developed coarse-grained (CG) model in simulating the activation of the Kv1.2 channel. The CG model has allowed us to explore problems that cannot be fully addressed at present by microscopic simulations, while providing insights on some features that are not usually considered in continuum models, including the distribution of the electrolytes between the membrane and the electrodes during the activation process and thus the physical nature of the gating current. Here, we demonstrate that the CG model yields realistic gating charges and free energy landscapes that allow us to simulate the fluctuating gating current in the activation processes. Our ability to simulate the time dependence of the fast gating current allows us to reproduce the observed trend and provides a clear description of its relationship to the landscape involved in the activation process. |
doi_str_mv | 10.1073/pnas.1324014111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24464485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23768828</jstor_id><sourcerecordid>23768828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-665b4f862b06200b36655870bb7b4fc0630ec62546232ff842ae8f6c2e0258913</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EoqVw5gSsxIXLpjP-Wu8FCUV8iUocoOJoeV3vxtHGDvZuJP57nKSkhQsnyzO_eXozj5DnCAuEhl1ug8kLZJQDckR8QM4RWqwlb-EhOQegTa045WfkSc5rAGiFgsfkjHIuOVfinPxYRpOyq4dkfHA3VfabeTSTjyFXsa-mlauG8g1DZeeUXJgqHw7VXRwnM7ja2MnvzFRGv-xwQSu7MiG48Sl51Jsxu2e37wW5_vD--_JTffX14-flu6vaCsqmWkrR8V5J2oGkAB0rBaEa6Lqm1C1IBs5KKrikjPZ92cU41UtLHVChWmQX5O1Rdzt3G3dji8NkRr1NfmPSLx2N1393gl_pIe40a6kEpYrAm1uBFH_OLk9647N142iCi3PWqICVsyE2_0d52yIX0IiCvv4HXcc5hXKJAwWiULJQl0fKpphzcv3JN4Le56v3-eq7fMvEy_vrnvg_gd4D9pMnOUQtNUW63_fFEVjnKaY7AdZIpQ79V8d-b6I2Q_JZX3-jgBKKBaDA2G-exrw_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499055076</pqid></control><display><type>article</type><title>Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Ilsoo ; Warshel, Arieh</creator><creatorcontrib>Kim, Ilsoo ; Warshel, Arieh</creatorcontrib><description>Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of the above challenges by using our recently developed coarse-grained (CG) model in simulating the activation of the Kv1.2 channel. The CG model has allowed us to explore problems that cannot be fully addressed at present by microscopic simulations, while providing insights on some features that are not usually considered in continuum models, including the distribution of the electrolytes between the membrane and the electrodes during the activation process and thus the physical nature of the gating current. Here, we demonstrate that the CG model yields realistic gating charges and free energy landscapes that allow us to simulate the fluctuating gating current in the activation processes. Our ability to simulate the time dependence of the fast gating current allows us to reproduce the observed trend and provides a clear description of its relationship to the landscape involved in the activation process.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1324014111</identifier><identifier>PMID: 24464485</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Depolarization ; Electric current ; Electric potential ; Electrodes ; Electrolytes ; energy ; Free energy ; Ion Channel Gating ; Ion channels ; Ions ; Kinetics ; Kv1.2 Potassium Channel - chemistry ; Kv1.2 Potassium Channel - physiology ; landscapes ; Membrane potential ; Membranes ; Modeling ; Models, Biological ; Models, Molecular ; simulation models ; Simulations ; uncertainty</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (6), p.2128-2133</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 11, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-665b4f862b06200b36655870bb7b4fc0630ec62546232ff842ae8f6c2e0258913</citedby><cites>FETCH-LOGICAL-c523t-665b4f862b06200b36655870bb7b4fc0630ec62546232ff842ae8f6c2e0258913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23768828$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23768828$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24464485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ilsoo</creatorcontrib><creatorcontrib>Warshel, Arieh</creatorcontrib><title>Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of the above challenges by using our recently developed coarse-grained (CG) model in simulating the activation of the Kv1.2 channel. The CG model has allowed us to explore problems that cannot be fully addressed at present by microscopic simulations, while providing insights on some features that are not usually considered in continuum models, including the distribution of the electrolytes between the membrane and the electrodes during the activation process and thus the physical nature of the gating current. Here, we demonstrate that the CG model yields realistic gating charges and free energy landscapes that allow us to simulate the fluctuating gating current in the activation processes. Our ability to simulate the time dependence of the fast gating current allows us to reproduce the observed trend and provides a clear description of its relationship to the landscape involved in the activation process.</description><subject>Biological Sciences</subject><subject>Depolarization</subject><subject>Electric current</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>energy</subject><subject>Free energy</subject><subject>Ion Channel Gating</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Kv1.2 Potassium Channel - chemistry</subject><subject>Kv1.2 Potassium Channel - physiology</subject><subject>landscapes</subject><subject>Membrane potential</subject><subject>Membranes</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>simulation models</subject><subject>Simulations</subject><subject>uncertainty</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EoqVw5gSsxIXLpjP-Wu8FCUV8iUocoOJoeV3vxtHGDvZuJP57nKSkhQsnyzO_eXozj5DnCAuEhl1ug8kLZJQDckR8QM4RWqwlb-EhOQegTa045WfkSc5rAGiFgsfkjHIuOVfinPxYRpOyq4dkfHA3VfabeTSTjyFXsa-mlauG8g1DZeeUXJgqHw7VXRwnM7ja2MnvzFRGv-xwQSu7MiG48Sl51Jsxu2e37wW5_vD--_JTffX14-flu6vaCsqmWkrR8V5J2oGkAB0rBaEa6Lqm1C1IBs5KKrikjPZ92cU41UtLHVChWmQX5O1Rdzt3G3dji8NkRr1NfmPSLx2N1393gl_pIe40a6kEpYrAm1uBFH_OLk9647N142iCi3PWqICVsyE2_0d52yIX0IiCvv4HXcc5hXKJAwWiULJQl0fKpphzcv3JN4Le56v3-eq7fMvEy_vrnvg_gd4D9pMnOUQtNUW63_fFEVjnKaY7AdZIpQ79V8d-b6I2Q_JZX3-jgBKKBaDA2G-exrw_</recordid><startdate>20140211</startdate><enddate>20140211</enddate><creator>Kim, Ilsoo</creator><creator>Warshel, Arieh</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140211</creationdate><title>Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel</title><author>Kim, Ilsoo ; Warshel, Arieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-665b4f862b06200b36655870bb7b4fc0630ec62546232ff842ae8f6c2e0258913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological Sciences</topic><topic>Depolarization</topic><topic>Electric current</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>energy</topic><topic>Free energy</topic><topic>Ion Channel Gating</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Kv1.2 Potassium Channel - chemistry</topic><topic>Kv1.2 Potassium Channel - physiology</topic><topic>landscapes</topic><topic>Membrane potential</topic><topic>Membranes</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>simulation models</topic><topic>Simulations</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ilsoo</creatorcontrib><creatorcontrib>Warshel, Arieh</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ilsoo</au><au>Warshel, Arieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-11</date><risdate>2014</risdate><volume>111</volume><issue>6</issue><spage>2128</spage><epage>2133</epage><pages>2128-2133</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Quantitative structure-based modeling of voltage activation of ion channels is very challenging. For example, it is very hard to reach converging results, by microscopic simulations while macroscopic treatments involve major uncertainties regarding key features. The current work overcomes some of the above challenges by using our recently developed coarse-grained (CG) model in simulating the activation of the Kv1.2 channel. The CG model has allowed us to explore problems that cannot be fully addressed at present by microscopic simulations, while providing insights on some features that are not usually considered in continuum models, including the distribution of the electrolytes between the membrane and the electrodes during the activation process and thus the physical nature of the gating current. Here, we demonstrate that the CG model yields realistic gating charges and free energy landscapes that allow us to simulate the fluctuating gating current in the activation processes. Our ability to simulate the time dependence of the fast gating current allows us to reproduce the observed trend and provides a clear description of its relationship to the landscape involved in the activation process.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24464485</pmid><doi>10.1073/pnas.1324014111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (6), p.2128-2133 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_24464485 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Depolarization Electric current Electric potential Electrodes Electrolytes energy Free energy Ion Channel Gating Ion channels Ions Kinetics Kv1.2 Potassium Channel - chemistry Kv1.2 Potassium Channel - physiology landscapes Membrane potential Membranes Modeling Models, Biological Models, Molecular simulation models Simulations uncertainty |
title | Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-grained%20simulations%20of%20the%20gating%20current%20in%20the%20voltage-activated%20Kv1.2%20channel&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim,%20Ilsoo&rft.date=2014-02-11&rft.volume=111&rft.issue=6&rft.spage=2128&rft.epage=2133&rft.pages=2128-2133&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1324014111&rft_dat=%3Cjstor_pubme%3E23768828%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499055076&rft_id=info:pmid/24464485&rft_jstor_id=23768828&rfr_iscdi=true |