Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey

In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2014-01, Vol.11 (90), p.20130880-20130880
Hauptverfasser: Gemmell, Brad J., Adhikari, Deepak, Longmire, Ellen K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20130880
container_issue 90
container_start_page 20130880
container_title Journal of the Royal Society interface
container_volume 11
creator Gemmell, Brad J.
Adhikari, Deepak
Longmire, Ellen K.
description In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture.
doi_str_mv 10.1098/rsif.2013.0880
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24227312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1459155373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-4414130e53daad901980b9fce22ae010987345ab3604ab70ef137c62af211173</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIlsKVI8oNLlk8dhwnFyRUtaWoEoKuerW8yYT1ksRbfwTSX19HKSsqBBfbo3nz3vO8JHkNZAWkKt9bp9sVJcBWpCzJk-QYRE4zXhT06eFdVkfJC-d2hDDBOH-eHNGcUsGAHie7G9OFHr3VdXob1OB1q2vltRlS06ZtF3QTT_MztTii6lzaard969LgcAZsp8aaZhpUH-edjwi_Tb1Ja7X3wWKKo3J6xHRvcXqZPGsjA756uE-S9fnZ-vRTdvXl4vL041VWR9s-y3PIgRHkrFGqqQhUJdlUbY2UKiTzpwXLudqwguRqIwi2wERdUNVSABDsJPmw0O7DpsemxsFb1cm91b2ykzRKy8edQW_ldzNKVrKC0TISvHsgsOY2oPOy167GrlMDmuAk5LwCzuMuI3S1QGtrnLPYHmSAyNmqnPORcz5yzicOvPnT3AH-O5AIwAVgzRSXZGqNfpI7E-wQS_nt-vJ8BNAViXwMCOcUuLzT-0UIQGrnAsrYf6z8txH2P51_2s-WKR2z_nVwr-wPWQgmuLwpcykuSCXWn6_lV3YPiwnQZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459155373</pqid></control><display><type>article</type><title>Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey</title><source>MEDLINE</source><source>PubMed Central</source><creator>Gemmell, Brad J. ; Adhikari, Deepak ; Longmire, Ellen K.</creator><creatorcontrib>Gemmell, Brad J. ; Adhikari, Deepak ; Longmire, Ellen K.</creatorcontrib><description>In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2013.0880</identifier><identifier>PMID: 24227312</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Animal–fluid Interaction ; Copepoda ; Feeding Behavior ; Hydrodynamic Signals ; Hydrodynamics ; Predation ; Predatory Behavior ; Stealth Predation ; Strain Rate ; Swimming ; Tomography ; Water Movements ; Zebrafish - physiology</subject><ispartof>Journal of the Royal Society interface, 2014-01, Vol.11 (90), p.20130880-20130880</ispartof><rights>2013 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2013 The Author(s) Published by the Royal Society. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-4414130e53daad901980b9fce22ae010987345ab3604ab70ef137c62af211173</citedby><cites>FETCH-LOGICAL-c566t-4414130e53daad901980b9fce22ae010987345ab3604ab70ef137c62af211173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836328/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836328/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24227312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gemmell, Brad J.</creatorcontrib><creatorcontrib>Adhikari, Deepak</creatorcontrib><creatorcontrib>Longmire, Ellen K.</creatorcontrib><title>Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture.</description><subject>Animals</subject><subject>Animal–fluid Interaction</subject><subject>Copepoda</subject><subject>Feeding Behavior</subject><subject>Hydrodynamic Signals</subject><subject>Hydrodynamics</subject><subject>Predation</subject><subject>Predatory Behavior</subject><subject>Stealth Predation</subject><subject>Strain Rate</subject><subject>Swimming</subject><subject>Tomography</subject><subject>Water Movements</subject><subject>Zebrafish - physiology</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQjRCIlsKVI8oNLlk8dhwnFyRUtaWoEoKuerW8yYT1ksRbfwTSX19HKSsqBBfbo3nz3vO8JHkNZAWkKt9bp9sVJcBWpCzJk-QYRE4zXhT06eFdVkfJC-d2hDDBOH-eHNGcUsGAHie7G9OFHr3VdXob1OB1q2vltRlS06ZtF3QTT_MztTii6lzaard969LgcAZsp8aaZhpUH-edjwi_Tb1Ja7X3wWKKo3J6xHRvcXqZPGsjA756uE-S9fnZ-vRTdvXl4vL041VWR9s-y3PIgRHkrFGqqQhUJdlUbY2UKiTzpwXLudqwguRqIwi2wERdUNVSABDsJPmw0O7DpsemxsFb1cm91b2ykzRKy8edQW_ldzNKVrKC0TISvHsgsOY2oPOy167GrlMDmuAk5LwCzuMuI3S1QGtrnLPYHmSAyNmqnPORcz5yzicOvPnT3AH-O5AIwAVgzRSXZGqNfpI7E-wQS_nt-vJ8BNAViXwMCOcUuLzT-0UIQGrnAsrYf6z8txH2P51_2s-WKR2z_nVwr-wPWQgmuLwpcykuSCXWn6_lV3YPiwnQZg</recordid><startdate>20140106</startdate><enddate>20140106</enddate><creator>Gemmell, Brad J.</creator><creator>Adhikari, Deepak</creator><creator>Longmire, Ellen K.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140106</creationdate><title>Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey</title><author>Gemmell, Brad J. ; Adhikari, Deepak ; Longmire, Ellen K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-4414130e53daad901980b9fce22ae010987345ab3604ab70ef137c62af211173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Animal–fluid Interaction</topic><topic>Copepoda</topic><topic>Feeding Behavior</topic><topic>Hydrodynamic Signals</topic><topic>Hydrodynamics</topic><topic>Predation</topic><topic>Predatory Behavior</topic><topic>Stealth Predation</topic><topic>Strain Rate</topic><topic>Swimming</topic><topic>Tomography</topic><topic>Water Movements</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gemmell, Brad J.</creatorcontrib><creatorcontrib>Adhikari, Deepak</creatorcontrib><creatorcontrib>Longmire, Ellen K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gemmell, Brad J.</au><au>Adhikari, Deepak</au><au>Longmire, Ellen K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2014-01-06</date><risdate>2014</risdate><volume>11</volume><issue>90</issue><spage>20130880</spage><epage>20130880</epage><pages>20130880-20130880</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>24227312</pmid><doi>10.1098/rsif.2013.0880</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2014-01, Vol.11 (90), p.20130880-20130880
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmed_primary_24227312
source MEDLINE; PubMed Central
subjects Animals
Animal–fluid Interaction
Copepoda
Feeding Behavior
Hydrodynamic Signals
Hydrodynamics
Predation
Predatory Behavior
Stealth Predation
Strain Rate
Swimming
Tomography
Water Movements
Zebrafish - physiology
title Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volumetric%20quantification%20of%20fluid%20flow%20reveals%20fish's%20use%20of%20hydrodynamic%20stealth%20to%20capture%20evasive%20prey&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Gemmell,%20Brad%20J.&rft.date=2014-01-06&rft.volume=11&rft.issue=90&rft.spage=20130880&rft.epage=20130880&rft.pages=20130880-20130880&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2013.0880&rft_dat=%3Cproquest_pubme%3E1459155373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459155373&rft_id=info:pmid/24227312&rfr_iscdi=true