Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey
In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capa...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2014-01, Vol.11 (90), p.20130880-20130880 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20130880 |
---|---|
container_issue | 90 |
container_start_page | 20130880 |
container_title | Journal of the Royal Society interface |
container_volume | 11 |
creator | Gemmell, Brad J. Adhikari, Deepak Longmire, Ellen K. |
description | In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture. |
doi_str_mv | 10.1098/rsif.2013.0880 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24227312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1459155373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-4414130e53daad901980b9fce22ae010987345ab3604ab70ef137c62af211173</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIlsKVI8oNLlk8dhwnFyRUtaWoEoKuerW8yYT1ksRbfwTSX19HKSsqBBfbo3nz3vO8JHkNZAWkKt9bp9sVJcBWpCzJk-QYRE4zXhT06eFdVkfJC-d2hDDBOH-eHNGcUsGAHie7G9OFHr3VdXob1OB1q2vltRlS06ZtF3QTT_MztTii6lzaard969LgcAZsp8aaZhpUH-edjwi_Tb1Ja7X3wWKKo3J6xHRvcXqZPGsjA756uE-S9fnZ-vRTdvXl4vL041VWR9s-y3PIgRHkrFGqqQhUJdlUbY2UKiTzpwXLudqwguRqIwi2wERdUNVSABDsJPmw0O7DpsemxsFb1cm91b2ykzRKy8edQW_ldzNKVrKC0TISvHsgsOY2oPOy167GrlMDmuAk5LwCzuMuI3S1QGtrnLPYHmSAyNmqnPORcz5yzicOvPnT3AH-O5AIwAVgzRSXZGqNfpI7E-wQS_nt-vJ8BNAViXwMCOcUuLzT-0UIQGrnAsrYf6z8txH2P51_2s-WKR2z_nVwr-wPWQgmuLwpcykuSCXWn6_lV3YPiwnQZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459155373</pqid></control><display><type>article</type><title>Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey</title><source>MEDLINE</source><source>PubMed Central</source><creator>Gemmell, Brad J. ; Adhikari, Deepak ; Longmire, Ellen K.</creator><creatorcontrib>Gemmell, Brad J. ; Adhikari, Deepak ; Longmire, Ellen K.</creatorcontrib><description>In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2013.0880</identifier><identifier>PMID: 24227312</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Animal–fluid Interaction ; Copepoda ; Feeding Behavior ; Hydrodynamic Signals ; Hydrodynamics ; Predation ; Predatory Behavior ; Stealth Predation ; Strain Rate ; Swimming ; Tomography ; Water Movements ; Zebrafish - physiology</subject><ispartof>Journal of the Royal Society interface, 2014-01, Vol.11 (90), p.20130880-20130880</ispartof><rights>2013 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2013 The Author(s) Published by the Royal Society. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-4414130e53daad901980b9fce22ae010987345ab3604ab70ef137c62af211173</citedby><cites>FETCH-LOGICAL-c566t-4414130e53daad901980b9fce22ae010987345ab3604ab70ef137c62af211173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836328/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836328/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24227312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gemmell, Brad J.</creatorcontrib><creatorcontrib>Adhikari, Deepak</creatorcontrib><creatorcontrib>Longmire, Ellen K.</creatorcontrib><title>Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture.</description><subject>Animals</subject><subject>Animal–fluid Interaction</subject><subject>Copepoda</subject><subject>Feeding Behavior</subject><subject>Hydrodynamic Signals</subject><subject>Hydrodynamics</subject><subject>Predation</subject><subject>Predatory Behavior</subject><subject>Stealth Predation</subject><subject>Strain Rate</subject><subject>Swimming</subject><subject>Tomography</subject><subject>Water Movements</subject><subject>Zebrafish - physiology</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQjRCIlsKVI8oNLlk8dhwnFyRUtaWoEoKuerW8yYT1ksRbfwTSX19HKSsqBBfbo3nz3vO8JHkNZAWkKt9bp9sVJcBWpCzJk-QYRE4zXhT06eFdVkfJC-d2hDDBOH-eHNGcUsGAHie7G9OFHr3VdXob1OB1q2vltRlS06ZtF3QTT_MztTii6lzaard969LgcAZsp8aaZhpUH-edjwi_Tb1Ja7X3wWKKo3J6xHRvcXqZPGsjA756uE-S9fnZ-vRTdvXl4vL041VWR9s-y3PIgRHkrFGqqQhUJdlUbY2UKiTzpwXLudqwguRqIwi2wERdUNVSABDsJPmw0O7DpsemxsFb1cm91b2ykzRKy8edQW_ldzNKVrKC0TISvHsgsOY2oPOy167GrlMDmuAk5LwCzuMuI3S1QGtrnLPYHmSAyNmqnPORcz5yzicOvPnT3AH-O5AIwAVgzRSXZGqNfpI7E-wQS_nt-vJ8BNAViXwMCOcUuLzT-0UIQGrnAsrYf6z8txH2P51_2s-WKR2z_nVwr-wPWQgmuLwpcykuSCXWn6_lV3YPiwnQZg</recordid><startdate>20140106</startdate><enddate>20140106</enddate><creator>Gemmell, Brad J.</creator><creator>Adhikari, Deepak</creator><creator>Longmire, Ellen K.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140106</creationdate><title>Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey</title><author>Gemmell, Brad J. ; Adhikari, Deepak ; Longmire, Ellen K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-4414130e53daad901980b9fce22ae010987345ab3604ab70ef137c62af211173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Animal–fluid Interaction</topic><topic>Copepoda</topic><topic>Feeding Behavior</topic><topic>Hydrodynamic Signals</topic><topic>Hydrodynamics</topic><topic>Predation</topic><topic>Predatory Behavior</topic><topic>Stealth Predation</topic><topic>Strain Rate</topic><topic>Swimming</topic><topic>Tomography</topic><topic>Water Movements</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gemmell, Brad J.</creatorcontrib><creatorcontrib>Adhikari, Deepak</creatorcontrib><creatorcontrib>Longmire, Ellen K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gemmell, Brad J.</au><au>Adhikari, Deepak</au><au>Longmire, Ellen K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2014-01-06</date><risdate>2014</risdate><volume>11</volume><issue>90</issue><spage>20130880</spage><epage>20130880</epage><pages>20130880-20130880</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>24227312</pmid><doi>10.1098/rsif.2013.0880</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2014-01, Vol.11 (90), p.20130880-20130880 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmed_primary_24227312 |
source | MEDLINE; PubMed Central |
subjects | Animals Animal–fluid Interaction Copepoda Feeding Behavior Hydrodynamic Signals Hydrodynamics Predation Predatory Behavior Stealth Predation Strain Rate Swimming Tomography Water Movements Zebrafish - physiology |
title | Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volumetric%20quantification%20of%20fluid%20flow%20reveals%20fish's%20use%20of%20hydrodynamic%20stealth%20to%20capture%20evasive%20prey&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Gemmell,%20Brad%20J.&rft.date=2014-01-06&rft.volume=11&rft.issue=90&rft.spage=20130880&rft.epage=20130880&rft.pages=20130880-20130880&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2013.0880&rft_dat=%3Cproquest_pubme%3E1459155373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459155373&rft_id=info:pmid/24227312&rfr_iscdi=true |