Yeast cells with impaired drug resistance accumulate glycerol and glucose
Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the tra...
Gespeichert in:
Veröffentlicht in: | Molecular bioSystems 2014-01, Vol.1 (1), p.93-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 93 |
container_title | Molecular bioSystems |
container_volume | 1 |
creator | Dikicioglu, Duygu Oc, Sebnem Rash, Bharat. M Dunn, Warwick B Pir, P nar Kell, Douglas B Kirdar, Betul Oliver, Stephen G |
description | Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene,
QDR3
) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of
QDR3
and
PDR3
. Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds.
Yeast cells lacking key drug export mechanisms rearrange their metabolism, accumulating glycerol and glucose, to help combat possible chemical attacks. |
doi_str_mv | 10.1039/c2mb25512j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24157722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492619160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-afd97a839f3a5869c16aa40f346fc6151d3d235ba17e63ff73ab7e5a523711be3</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRbK1evCt7FKG6s5vNNkctflQqXhT0FCab2ZqSNHU3QfrvTW2tp5nhfXgZHsZOQVyBUMm1lVUmtQY532N9MJEcSqFhf7fH7z12FMJcCDWKQByynoxAGyNln00-CEPDLZVl4N9F88mLaomFp5znvp1xT6EIDS4scbS2rdoSG-KzcmXJ1yXHRd4dra0DHbMDh2Wgk-0csLf7u9fx43D68jAZ30yHNoKkGaLLE4MjlTiFehQnFmLESDgVxc7GoCFXuVQ6QzAUK-eMwsyQRi2VAchIDdjFpnfp66-WQpNWRVj_jwuq25BClMgYEohFh15uUOvrEDy5dOmLCv0qBZGu1aVj-Xz7q-6pg8-3vW1WUb5D_1x1wNkG8MHu0n_36gfyfHNR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492619160</pqid></control><display><type>article</type><title>Yeast cells with impaired drug resistance accumulate glycerol and glucose</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Dikicioglu, Duygu ; Oc, Sebnem ; Rash, Bharat. M ; Dunn, Warwick B ; Pir, P nar ; Kell, Douglas B ; Kirdar, Betul ; Oliver, Stephen G</creator><creatorcontrib>Dikicioglu, Duygu ; Oc, Sebnem ; Rash, Bharat. M ; Dunn, Warwick B ; Pir, P nar ; Kell, Douglas B ; Kirdar, Betul ; Oliver, Stephen G</creatorcontrib><description>Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene,
QDR3
) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of
QDR3
and
PDR3
. Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds.
Yeast cells lacking key drug export mechanisms rearrange their metabolism, accumulating glycerol and glucose, to help combat possible chemical attacks.</description><identifier>ISSN: 1742-206X</identifier><identifier>EISSN: 1742-2051</identifier><identifier>DOI: 10.1039/c2mb25512j</identifier><identifier>PMID: 24157722</identifier><language>eng</language><publisher>England</publisher><subject>ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drug Resistance, Multiple - genetics ; Fungal Proteins - biosynthesis ; Glucose - metabolism ; Glycerol - metabolism ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Metabolome - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptome - genetics</subject><ispartof>Molecular bioSystems, 2014-01, Vol.1 (1), p.93-12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-afd97a839f3a5869c16aa40f346fc6151d3d235ba17e63ff73ab7e5a523711be3</citedby><cites>FETCH-LOGICAL-c419t-afd97a839f3a5869c16aa40f346fc6151d3d235ba17e63ff73ab7e5a523711be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24157722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dikicioglu, Duygu</creatorcontrib><creatorcontrib>Oc, Sebnem</creatorcontrib><creatorcontrib>Rash, Bharat. M</creatorcontrib><creatorcontrib>Dunn, Warwick B</creatorcontrib><creatorcontrib>Pir, P nar</creatorcontrib><creatorcontrib>Kell, Douglas B</creatorcontrib><creatorcontrib>Kirdar, Betul</creatorcontrib><creatorcontrib>Oliver, Stephen G</creatorcontrib><title>Yeast cells with impaired drug resistance accumulate glycerol and glucose</title><title>Molecular bioSystems</title><addtitle>Mol Biosyst</addtitle><description>Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene,
QDR3
) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of
QDR3
and
PDR3
. Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds.
Yeast cells lacking key drug export mechanisms rearrange their metabolism, accumulating glycerol and glucose, to help combat possible chemical attacks.</description><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug Resistance, Multiple - genetics</subject><subject>Fungal Proteins - biosynthesis</subject><subject>Glucose - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Metabolome - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptome - genetics</subject><issn>1742-206X</issn><issn>1742-2051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1Lw0AQhhdRbK1evCt7FKG6s5vNNkctflQqXhT0FCab2ZqSNHU3QfrvTW2tp5nhfXgZHsZOQVyBUMm1lVUmtQY532N9MJEcSqFhf7fH7z12FMJcCDWKQByynoxAGyNln00-CEPDLZVl4N9F88mLaomFp5znvp1xT6EIDS4scbS2rdoSG-KzcmXJ1yXHRd4dra0DHbMDh2Wgk-0csLf7u9fx43D68jAZ30yHNoKkGaLLE4MjlTiFehQnFmLESDgVxc7GoCFXuVQ6QzAUK-eMwsyQRi2VAchIDdjFpnfp66-WQpNWRVj_jwuq25BClMgYEohFh15uUOvrEDy5dOmLCv0qBZGu1aVj-Xz7q-6pg8-3vW1WUb5D_1x1wNkG8MHu0n_36gfyfHNR</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Dikicioglu, Duygu</creator><creator>Oc, Sebnem</creator><creator>Rash, Bharat. M</creator><creator>Dunn, Warwick B</creator><creator>Pir, P nar</creator><creator>Kell, Douglas B</creator><creator>Kirdar, Betul</creator><creator>Oliver, Stephen G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>20140101</creationdate><title>Yeast cells with impaired drug resistance accumulate glycerol and glucose</title><author>Dikicioglu, Duygu ; Oc, Sebnem ; Rash, Bharat. M ; Dunn, Warwick B ; Pir, P nar ; Kell, Douglas B ; Kirdar, Betul ; Oliver, Stephen G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-afd97a839f3a5869c16aa40f346fc6151d3d235ba17e63ff73ab7e5a523711be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug Resistance, Multiple - genetics</topic><topic>Fungal Proteins - biosynthesis</topic><topic>Glucose - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Metabolome - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dikicioglu, Duygu</creatorcontrib><creatorcontrib>Oc, Sebnem</creatorcontrib><creatorcontrib>Rash, Bharat. M</creatorcontrib><creatorcontrib>Dunn, Warwick B</creatorcontrib><creatorcontrib>Pir, P nar</creatorcontrib><creatorcontrib>Kell, Douglas B</creatorcontrib><creatorcontrib>Kirdar, Betul</creatorcontrib><creatorcontrib>Oliver, Stephen G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Molecular bioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dikicioglu, Duygu</au><au>Oc, Sebnem</au><au>Rash, Bharat. M</au><au>Dunn, Warwick B</au><au>Pir, P nar</au><au>Kell, Douglas B</au><au>Kirdar, Betul</au><au>Oliver, Stephen G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast cells with impaired drug resistance accumulate glycerol and glucose</atitle><jtitle>Molecular bioSystems</jtitle><addtitle>Mol Biosyst</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>1</volume><issue>1</issue><spage>93</spage><epage>12</epage><pages>93-12</pages><issn>1742-206X</issn><eissn>1742-2051</eissn><abstract>Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene,
QDR3
) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of
QDR3
and
PDR3
. Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds.
Yeast cells lacking key drug export mechanisms rearrange their metabolism, accumulating glycerol and glucose, to help combat possible chemical attacks.</abstract><cop>England</cop><pmid>24157722</pmid><doi>10.1039/c2mb25512j</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-206X |
ispartof | Molecular bioSystems, 2014-01, Vol.1 (1), p.93-12 |
issn | 1742-206X 1742-2051 |
language | eng |
recordid | cdi_pubmed_primary_24157722 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Drug Resistance, Multiple - genetics Fungal Proteins - biosynthesis Glucose - metabolism Glycerol - metabolism Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Metabolome - genetics Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Transcription Factors - genetics Transcription Factors - metabolism Transcriptome - genetics |
title | Yeast cells with impaired drug resistance accumulate glycerol and glucose |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20cells%20with%20impaired%20drug%20resistance%20accumulate%20glycerol%20and%20glucose&rft.jtitle=Molecular%20bioSystems&rft.au=Dikicioglu,%20Duygu&rft.date=2014-01-01&rft.volume=1&rft.issue=1&rft.spage=93&rft.epage=12&rft.pages=93-12&rft.issn=1742-206X&rft.eissn=1742-2051&rft_id=info:doi/10.1039/c2mb25512j&rft_dat=%3Cproquest_pubme%3E1492619160%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492619160&rft_id=info:pmid/24157722&rfr_iscdi=true |