Yeast cells with impaired drug resistance accumulate glycerol and glucose

Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular bioSystems 2014-01, Vol.1 (1), p.93-12
Hauptverfasser: Dikicioglu, Duygu, Oc, Sebnem, Rash, Bharat. M, Dunn, Warwick B, Pir, P nar, Kell, Douglas B, Kirdar, Betul, Oliver, Stephen G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 93
container_title Molecular bioSystems
container_volume 1
creator Dikicioglu, Duygu
Oc, Sebnem
Rash, Bharat. M
Dunn, Warwick B
Pir, P nar
Kell, Douglas B
Kirdar, Betul
Oliver, Stephen G
description Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene, QDR3 ) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of QDR3 and PDR3 . Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds. Yeast cells lacking key drug export mechanisms rearrange their metabolism, accumulating glycerol and glucose, to help combat possible chemical attacks.
doi_str_mv 10.1039/c2mb25512j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24157722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492619160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-afd97a839f3a5869c16aa40f346fc6151d3d235ba17e63ff73ab7e5a523711be3</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRbK1evCt7FKG6s5vNNkctflQqXhT0FCab2ZqSNHU3QfrvTW2tp5nhfXgZHsZOQVyBUMm1lVUmtQY532N9MJEcSqFhf7fH7z12FMJcCDWKQByynoxAGyNln00-CEPDLZVl4N9F88mLaomFp5znvp1xT6EIDS4scbS2rdoSG-KzcmXJ1yXHRd4dra0DHbMDh2Wgk-0csLf7u9fx43D68jAZ30yHNoKkGaLLE4MjlTiFehQnFmLESDgVxc7GoCFXuVQ6QzAUK-eMwsyQRi2VAchIDdjFpnfp66-WQpNWRVj_jwuq25BClMgYEohFh15uUOvrEDy5dOmLCv0qBZGu1aVj-Xz7q-6pg8-3vW1WUb5D_1x1wNkG8MHu0n_36gfyfHNR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492619160</pqid></control><display><type>article</type><title>Yeast cells with impaired drug resistance accumulate glycerol and glucose</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Dikicioglu, Duygu ; Oc, Sebnem ; Rash, Bharat. M ; Dunn, Warwick B ; Pir, P nar ; Kell, Douglas B ; Kirdar, Betul ; Oliver, Stephen G</creator><creatorcontrib>Dikicioglu, Duygu ; Oc, Sebnem ; Rash, Bharat. M ; Dunn, Warwick B ; Pir, P nar ; Kell, Douglas B ; Kirdar, Betul ; Oliver, Stephen G</creatorcontrib><description>Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene, QDR3 ) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of QDR3 and PDR3 . Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds. Yeast cells lacking key drug export mechanisms rearrange their metabolism, accumulating glycerol and glucose, to help combat possible chemical attacks.</description><identifier>ISSN: 1742-206X</identifier><identifier>EISSN: 1742-2051</identifier><identifier>DOI: 10.1039/c2mb25512j</identifier><identifier>PMID: 24157722</identifier><language>eng</language><publisher>England</publisher><subject>ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drug Resistance, Multiple - genetics ; Fungal Proteins - biosynthesis ; Glucose - metabolism ; Glycerol - metabolism ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Metabolome - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptome - genetics</subject><ispartof>Molecular bioSystems, 2014-01, Vol.1 (1), p.93-12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-afd97a839f3a5869c16aa40f346fc6151d3d235ba17e63ff73ab7e5a523711be3</citedby><cites>FETCH-LOGICAL-c419t-afd97a839f3a5869c16aa40f346fc6151d3d235ba17e63ff73ab7e5a523711be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24157722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dikicioglu, Duygu</creatorcontrib><creatorcontrib>Oc, Sebnem</creatorcontrib><creatorcontrib>Rash, Bharat. M</creatorcontrib><creatorcontrib>Dunn, Warwick B</creatorcontrib><creatorcontrib>Pir, P nar</creatorcontrib><creatorcontrib>Kell, Douglas B</creatorcontrib><creatorcontrib>Kirdar, Betul</creatorcontrib><creatorcontrib>Oliver, Stephen G</creatorcontrib><title>Yeast cells with impaired drug resistance accumulate glycerol and glucose</title><title>Molecular bioSystems</title><addtitle>Mol Biosyst</addtitle><description>Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene, QDR3 ) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of QDR3 and PDR3 . Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds. Yeast cells lacking key drug export mechanisms rearrange their metabolism, accumulating glycerol and glucose, to help combat possible chemical attacks.</description><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug Resistance, Multiple - genetics</subject><subject>Fungal Proteins - biosynthesis</subject><subject>Glucose - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Metabolome - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptome - genetics</subject><issn>1742-206X</issn><issn>1742-2051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1Lw0AQhhdRbK1evCt7FKG6s5vNNkctflQqXhT0FCab2ZqSNHU3QfrvTW2tp5nhfXgZHsZOQVyBUMm1lVUmtQY532N9MJEcSqFhf7fH7z12FMJcCDWKQByynoxAGyNln00-CEPDLZVl4N9F88mLaomFp5znvp1xT6EIDS4scbS2rdoSG-KzcmXJ1yXHRd4dra0DHbMDh2Wgk-0csLf7u9fx43D68jAZ30yHNoKkGaLLE4MjlTiFehQnFmLESDgVxc7GoCFXuVQ6QzAUK-eMwsyQRi2VAchIDdjFpnfp66-WQpNWRVj_jwuq25BClMgYEohFh15uUOvrEDy5dOmLCv0qBZGu1aVj-Xz7q-6pg8-3vW1WUb5D_1x1wNkG8MHu0n_36gfyfHNR</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Dikicioglu, Duygu</creator><creator>Oc, Sebnem</creator><creator>Rash, Bharat. M</creator><creator>Dunn, Warwick B</creator><creator>Pir, P nar</creator><creator>Kell, Douglas B</creator><creator>Kirdar, Betul</creator><creator>Oliver, Stephen G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>20140101</creationdate><title>Yeast cells with impaired drug resistance accumulate glycerol and glucose</title><author>Dikicioglu, Duygu ; Oc, Sebnem ; Rash, Bharat. M ; Dunn, Warwick B ; Pir, P nar ; Kell, Douglas B ; Kirdar, Betul ; Oliver, Stephen G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-afd97a839f3a5869c16aa40f346fc6151d3d235ba17e63ff73ab7e5a523711be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug Resistance, Multiple - genetics</topic><topic>Fungal Proteins - biosynthesis</topic><topic>Glucose - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Metabolome - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dikicioglu, Duygu</creatorcontrib><creatorcontrib>Oc, Sebnem</creatorcontrib><creatorcontrib>Rash, Bharat. M</creatorcontrib><creatorcontrib>Dunn, Warwick B</creatorcontrib><creatorcontrib>Pir, P nar</creatorcontrib><creatorcontrib>Kell, Douglas B</creatorcontrib><creatorcontrib>Kirdar, Betul</creatorcontrib><creatorcontrib>Oliver, Stephen G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Molecular bioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dikicioglu, Duygu</au><au>Oc, Sebnem</au><au>Rash, Bharat. M</au><au>Dunn, Warwick B</au><au>Pir, P nar</au><au>Kell, Douglas B</au><au>Kirdar, Betul</au><au>Oliver, Stephen G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast cells with impaired drug resistance accumulate glycerol and glucose</atitle><jtitle>Molecular bioSystems</jtitle><addtitle>Mol Biosyst</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>1</volume><issue>1</issue><spage>93</spage><epage>12</epage><pages>93-12</pages><issn>1742-206X</issn><eissn>1742-2051</eissn><abstract>Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene, QDR3 ) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of QDR3 and PDR3 . Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds. Yeast cells lacking key drug export mechanisms rearrange their metabolism, accumulating glycerol and glucose, to help combat possible chemical attacks.</abstract><cop>England</cop><pmid>24157722</pmid><doi>10.1039/c2mb25512j</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-206X
ispartof Molecular bioSystems, 2014-01, Vol.1 (1), p.93-12
issn 1742-206X
1742-2051
language eng
recordid cdi_pubmed_primary_24157722
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Drug Resistance, Multiple - genetics
Fungal Proteins - biosynthesis
Glucose - metabolism
Glycerol - metabolism
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Metabolome - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptome - genetics
title Yeast cells with impaired drug resistance accumulate glycerol and glucose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20cells%20with%20impaired%20drug%20resistance%20accumulate%20glycerol%20and%20glucose&rft.jtitle=Molecular%20bioSystems&rft.au=Dikicioglu,%20Duygu&rft.date=2014-01-01&rft.volume=1&rft.issue=1&rft.spage=93&rft.epage=12&rft.pages=93-12&rft.issn=1742-206X&rft.eissn=1742-2051&rft_id=info:doi/10.1039/c2mb25512j&rft_dat=%3Cproquest_pubme%3E1492619160%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492619160&rft_id=info:pmid/24157722&rfr_iscdi=true