SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion

Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2013-12, Vol.35 (12), p.2841-2853
Hauptverfasser: Crandall, David J., Owens, Andrew, Snavely, Noah, Huttenlocher, Daniel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2853
container_issue 12
container_start_page 2841
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 35
creator Crandall, David J.
Owens, Andrew
Snavely, Noah
Huttenlocher, Daniel P.
description Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.
doi_str_mv 10.1109/TPAMI.2012.218
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_24136425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6327192</ieee_id><sourcerecordid>1443418113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-79194ce4f6877a6cfb52181b67949ba5b97ef0f2e415d1fcc31002705006938b3</originalsourceid><addsrcrecordid>eNpFkE1PGzEQhq0KVALl2kulypdKXDZ4_LG75halUJASURE4r7xm3LrK7gbbq6r8epwmwGkO88yrdx5CPgObAjB9fv9ztryZcgZ8yqH-QCaghS6EEvqATBiUvKhrXh-R4xj_MAZSMfGRHHEJopRcTcjDyi3pX59-0-XdVbyg3320ARMW86FPvh-HMdLbTfKdfzbJDz11Q6ALE35hsbJmjXSVwmjTGJC6MHR0OWypT-TQmXXE0_08IQ9Xl_fz62Jx--NmPlsUVtQqFZUGLS1KV9ZVZUrrWpWfgLastNStUa2u0DHHUYJ6BGetAMZ4xRRjpRZ1K07I2S53E4anEWNqutwf12vTY27egJRC5kQQGZ3uUBuGGAO6ZhN8Z8K_BlizVdn8V9lsVTa5RT74us8e2w4f3_BXdxn4tgdMzCpcML318Z2rQTHOy8x92XEeEd_WpeAVaC5eAPRJg0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443418113</pqid></control><display><type>article</type><title>SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion</title><source>IEEE Electronic Library (IEL)</source><creator>Crandall, David J. ; Owens, Andrew ; Snavely, Noah ; Huttenlocher, Daniel P.</creator><creatorcontrib>Crandall, David J. ; Owens, Andrew ; Snavely, Noah ; Huttenlocher, Daniel P.</creatorcontrib><description>Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2012.218</identifier><identifier>PMID: 24136425</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>3D reconstruction ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Belief propagation ; Cameras ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Image reconstruction ; Information retrieval. Graph ; Markov random fields ; Motion analysis ; Noise measurement ; Optimization ; Pattern recognition. Digital image processing. Computational geometry ; Robustness ; Software ; Structure from motion ; Theoretical computing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2013-12, Vol.35 (12), p.2841-2853</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-79194ce4f6877a6cfb52181b67949ba5b97ef0f2e415d1fcc31002705006938b3</citedby><cites>FETCH-LOGICAL-c385t-79194ce4f6877a6cfb52181b67949ba5b97ef0f2e415d1fcc31002705006938b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6327192$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6327192$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28150226$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24136425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crandall, David J.</creatorcontrib><creatorcontrib>Owens, Andrew</creatorcontrib><creatorcontrib>Snavely, Noah</creatorcontrib><creatorcontrib>Huttenlocher, Daniel P.</creatorcontrib><title>SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.</description><subject>3D reconstruction</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Belief propagation</subject><subject>Cameras</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Image reconstruction</subject><subject>Information retrieval. Graph</subject><subject>Markov random fields</subject><subject>Motion analysis</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robustness</subject><subject>Software</subject><subject>Structure from motion</subject><subject>Theoretical computing</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1PGzEQhq0KVALl2kulypdKXDZ4_LG75halUJASURE4r7xm3LrK7gbbq6r8epwmwGkO88yrdx5CPgObAjB9fv9ztryZcgZ8yqH-QCaghS6EEvqATBiUvKhrXh-R4xj_MAZSMfGRHHEJopRcTcjDyi3pX59-0-XdVbyg3320ARMW86FPvh-HMdLbTfKdfzbJDz11Q6ALE35hsbJmjXSVwmjTGJC6MHR0OWypT-TQmXXE0_08IQ9Xl_fz62Jx--NmPlsUVtQqFZUGLS1KV9ZVZUrrWpWfgLastNStUa2u0DHHUYJ6BGetAMZ4xRRjpRZ1K07I2S53E4anEWNqutwf12vTY27egJRC5kQQGZ3uUBuGGAO6ZhN8Z8K_BlizVdn8V9lsVTa5RT74us8e2w4f3_BXdxn4tgdMzCpcML318Z2rQTHOy8x92XEeEd_WpeAVaC5eAPRJg0M</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Crandall, David J.</creator><creator>Owens, Andrew</creator><creator>Snavely, Noah</creator><creator>Huttenlocher, Daniel P.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion</title><author>Crandall, David J. ; Owens, Andrew ; Snavely, Noah ; Huttenlocher, Daniel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-79194ce4f6877a6cfb52181b67949ba5b97ef0f2e415d1fcc31002705006938b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3D reconstruction</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Belief propagation</topic><topic>Cameras</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Image reconstruction</topic><topic>Information retrieval. Graph</topic><topic>Markov random fields</topic><topic>Motion analysis</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robustness</topic><topic>Software</topic><topic>Structure from motion</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crandall, David J.</creatorcontrib><creatorcontrib>Owens, Andrew</creatorcontrib><creatorcontrib>Snavely, Noah</creatorcontrib><creatorcontrib>Huttenlocher, Daniel P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Crandall, David J.</au><au>Owens, Andrew</au><au>Snavely, Noah</au><au>Huttenlocher, Daniel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>35</volume><issue>12</issue><spage>2841</spage><epage>2853</epage><pages>2841-2853</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>24136425</pmid><doi>10.1109/TPAMI.2012.218</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2013-12, Vol.35 (12), p.2841-2853
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_24136425
source IEEE Electronic Library (IEL)
subjects 3D reconstruction
Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Belief propagation
Cameras
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Image reconstruction
Information retrieval. Graph
Markov random fields
Motion analysis
Noise measurement
Optimization
Pattern recognition. Digital image processing. Computational geometry
Robustness
Software
Structure from motion
Theoretical computing
title SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SfM%20with%20MRFs:%20Discrete-Continuous%20Optimization%20for%20Large-Scale%20Structure%20from%20Motion&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Crandall,%20David%20J.&rft.date=2013-12-01&rft.volume=35&rft.issue=12&rft.spage=2841&rft.epage=2853&rft.pages=2841-2853&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2012.218&rft_dat=%3Cproquest_RIE%3E1443418113%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443418113&rft_id=info:pmid/24136425&rft_ieee_id=6327192&rfr_iscdi=true