SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion
Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2013-12, Vol.35 (12), p.2841-2853 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2853 |
---|---|
container_issue | 12 |
container_start_page | 2841 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 35 |
creator | Crandall, David J. Owens, Andrew Snavely, Noah Huttenlocher, Daniel P. |
description | Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time. |
doi_str_mv | 10.1109/TPAMI.2012.218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_24136425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6327192</ieee_id><sourcerecordid>1443418113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-79194ce4f6877a6cfb52181b67949ba5b97ef0f2e415d1fcc31002705006938b3</originalsourceid><addsrcrecordid>eNpFkE1PGzEQhq0KVALl2kulypdKXDZ4_LG75halUJASURE4r7xm3LrK7gbbq6r8epwmwGkO88yrdx5CPgObAjB9fv9ztryZcgZ8yqH-QCaghS6EEvqATBiUvKhrXh-R4xj_MAZSMfGRHHEJopRcTcjDyi3pX59-0-XdVbyg3320ARMW86FPvh-HMdLbTfKdfzbJDz11Q6ALE35hsbJmjXSVwmjTGJC6MHR0OWypT-TQmXXE0_08IQ9Xl_fz62Jx--NmPlsUVtQqFZUGLS1KV9ZVZUrrWpWfgLastNStUa2u0DHHUYJ6BGetAMZ4xRRjpRZ1K07I2S53E4anEWNqutwf12vTY27egJRC5kQQGZ3uUBuGGAO6ZhN8Z8K_BlizVdn8V9lsVTa5RT74us8e2w4f3_BXdxn4tgdMzCpcML318Z2rQTHOy8x92XEeEd_WpeAVaC5eAPRJg0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443418113</pqid></control><display><type>article</type><title>SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion</title><source>IEEE Electronic Library (IEL)</source><creator>Crandall, David J. ; Owens, Andrew ; Snavely, Noah ; Huttenlocher, Daniel P.</creator><creatorcontrib>Crandall, David J. ; Owens, Andrew ; Snavely, Noah ; Huttenlocher, Daniel P.</creatorcontrib><description>Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2012.218</identifier><identifier>PMID: 24136425</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>3D reconstruction ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Belief propagation ; Cameras ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Image reconstruction ; Information retrieval. Graph ; Markov random fields ; Motion analysis ; Noise measurement ; Optimization ; Pattern recognition. Digital image processing. Computational geometry ; Robustness ; Software ; Structure from motion ; Theoretical computing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2013-12, Vol.35 (12), p.2841-2853</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-79194ce4f6877a6cfb52181b67949ba5b97ef0f2e415d1fcc31002705006938b3</citedby><cites>FETCH-LOGICAL-c385t-79194ce4f6877a6cfb52181b67949ba5b97ef0f2e415d1fcc31002705006938b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6327192$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6327192$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28150226$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24136425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crandall, David J.</creatorcontrib><creatorcontrib>Owens, Andrew</creatorcontrib><creatorcontrib>Snavely, Noah</creatorcontrib><creatorcontrib>Huttenlocher, Daniel P.</creatorcontrib><title>SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.</description><subject>3D reconstruction</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Belief propagation</subject><subject>Cameras</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Image reconstruction</subject><subject>Information retrieval. Graph</subject><subject>Markov random fields</subject><subject>Motion analysis</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robustness</subject><subject>Software</subject><subject>Structure from motion</subject><subject>Theoretical computing</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1PGzEQhq0KVALl2kulypdKXDZ4_LG75halUJASURE4r7xm3LrK7gbbq6r8epwmwGkO88yrdx5CPgObAjB9fv9ztryZcgZ8yqH-QCaghS6EEvqATBiUvKhrXh-R4xj_MAZSMfGRHHEJopRcTcjDyi3pX59-0-XdVbyg3320ARMW86FPvh-HMdLbTfKdfzbJDz11Q6ALE35hsbJmjXSVwmjTGJC6MHR0OWypT-TQmXXE0_08IQ9Xl_fz62Jx--NmPlsUVtQqFZUGLS1KV9ZVZUrrWpWfgLastNStUa2u0DHHUYJ6BGetAMZ4xRRjpRZ1K07I2S53E4anEWNqutwf12vTY27egJRC5kQQGZ3uUBuGGAO6ZhN8Z8K_BlizVdn8V9lsVTa5RT74us8e2w4f3_BXdxn4tgdMzCpcML318Z2rQTHOy8x92XEeEd_WpeAVaC5eAPRJg0M</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Crandall, David J.</creator><creator>Owens, Andrew</creator><creator>Snavely, Noah</creator><creator>Huttenlocher, Daniel P.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion</title><author>Crandall, David J. ; Owens, Andrew ; Snavely, Noah ; Huttenlocher, Daniel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-79194ce4f6877a6cfb52181b67949ba5b97ef0f2e415d1fcc31002705006938b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3D reconstruction</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Belief propagation</topic><topic>Cameras</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Image reconstruction</topic><topic>Information retrieval. Graph</topic><topic>Markov random fields</topic><topic>Motion analysis</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robustness</topic><topic>Software</topic><topic>Structure from motion</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crandall, David J.</creatorcontrib><creatorcontrib>Owens, Andrew</creatorcontrib><creatorcontrib>Snavely, Noah</creatorcontrib><creatorcontrib>Huttenlocher, Daniel P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Crandall, David J.</au><au>Owens, Andrew</au><au>Snavely, Noah</au><au>Huttenlocher, Daniel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>35</volume><issue>12</issue><spage>2841</spage><epage>2853</epage><pages>2841-2853</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>24136425</pmid><doi>10.1109/TPAMI.2012.218</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2013-12, Vol.35 (12), p.2841-2853 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_24136425 |
source | IEEE Electronic Library (IEL) |
subjects | 3D reconstruction Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Belief propagation Cameras Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology Image reconstruction Information retrieval. Graph Markov random fields Motion analysis Noise measurement Optimization Pattern recognition. Digital image processing. Computational geometry Robustness Software Structure from motion Theoretical computing |
title | SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SfM%20with%20MRFs:%20Discrete-Continuous%20Optimization%20for%20Large-Scale%20Structure%20from%20Motion&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Crandall,%20David%20J.&rft.date=2013-12-01&rft.volume=35&rft.issue=12&rft.spage=2841&rft.epage=2853&rft.pages=2841-2853&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2012.218&rft_dat=%3Cproquest_RIE%3E1443418113%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443418113&rft_id=info:pmid/24136425&rft_ieee_id=6327192&rfr_iscdi=true |