Single-Image Noise Level Estimation for Blind Denoising

Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2013-12, Vol.22 (12), p.5226-5237
Hauptverfasser: Xinhao Liu, Tanaka, Masayuki, Okutomi, Masatoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5237
container_issue 12
container_start_page 5226
container_title IEEE transactions on image processing
container_volume 22
creator Xinhao Liu
Tanaka, Masayuki
Okutomi, Masatoshi
description Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.
doi_str_mv 10.1109/TIP.2013.2283400
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_24108465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6607209</ieee_id><sourcerecordid>3095716811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-a84bfec9d45e34bbe3a0426a431e563a6809f4c6df27160c636bbbd59e219e253</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AgipvTd0GQggi-dF5-NE0edU4dDBWczyVtr6Oja2fSCv73ZqxO8CEkkM8dd19CzimMKQV9u5i9jRlQPmZMcQFwQIZUCxoCCHbo3xDFYUyFHpAT51YAVERUHpMBExSUkNGQxO9lvawwnK3NEoOXpnQYzPELq2Dq2nJt2rKpg6KxwX1V1nnwgLUnvuSUHBWmcnjW3yPy8ThdTJ7D-evTbHI3DzMhVRsaJdICM52LCLlIU-TGjyaN4BQjyY1UoAuRybxgMZWQSS7TNM0jjYz6E_ERudn13djms0PXJuvSZVhVpsamc4nfSNNIar6lV__oquls7afzSlDGIQbwCnYqs41zFotkY_2e9juhkGxDTXyoyTbUpA_Vl1z2jbt0jfm-4DdFD657YFxmqsKaOivdn1OgFIuVdxc7VyLi_ltKiBlo_gMdu4T3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441230700</pqid></control><display><type>article</type><title>Single-Image Noise Level Estimation for Blind Denoising</title><source>IEEE Electronic Library (IEL)</source><creator>Xinhao Liu ; Tanaka, Masayuki ; Okutomi, Masatoshi</creator><creatorcontrib>Xinhao Liu ; Tanaka, Masayuki ; Okutomi, Masatoshi</creatorcontrib><description>Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2283400</identifier><identifier>PMID: 24108465</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; blind denoising ; Covariance matrices ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Estimation ; Exact sciences and technology ; Gaussian noise ; image gradient ; Image processing ; Information, signal and communications theory ; low-rank patch ; Noise ; Noise control ; Noise level ; Noise level estimation ; Noise measurement ; Noise pollution ; Noise reduction ; PCA ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2013-12, Vol.22 (12), p.5226-5237</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-a84bfec9d45e34bbe3a0426a431e563a6809f4c6df27160c636bbbd59e219e253</citedby><cites>FETCH-LOGICAL-c468t-a84bfec9d45e34bbe3a0426a431e563a6809f4c6df27160c636bbbd59e219e253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6607209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6607209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28088278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24108465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xinhao Liu</creatorcontrib><creatorcontrib>Tanaka, Masayuki</creatorcontrib><creatorcontrib>Okutomi, Masatoshi</creatorcontrib><title>Single-Image Noise Level Estimation for Blind Denoising</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>blind denoising</subject><subject>Covariance matrices</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>image gradient</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>low-rank patch</subject><subject>Noise</subject><subject>Noise control</subject><subject>Noise level</subject><subject>Noise level estimation</subject><subject>Noise measurement</subject><subject>Noise pollution</subject><subject>Noise reduction</subject><subject>PCA</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0N9LwzAQB_AgipvTd0GQggi-dF5-NE0edU4dDBWczyVtr6Oja2fSCv73ZqxO8CEkkM8dd19CzimMKQV9u5i9jRlQPmZMcQFwQIZUCxoCCHbo3xDFYUyFHpAT51YAVERUHpMBExSUkNGQxO9lvawwnK3NEoOXpnQYzPELq2Dq2nJt2rKpg6KxwX1V1nnwgLUnvuSUHBWmcnjW3yPy8ThdTJ7D-evTbHI3DzMhVRsaJdICM52LCLlIU-TGjyaN4BQjyY1UoAuRybxgMZWQSS7TNM0jjYz6E_ERudn13djms0PXJuvSZVhVpsamc4nfSNNIar6lV__oquls7afzSlDGIQbwCnYqs41zFotkY_2e9juhkGxDTXyoyTbUpA_Vl1z2jbt0jfm-4DdFD657YFxmqsKaOivdn1OgFIuVdxc7VyLi_ltKiBlo_gMdu4T3</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Xinhao Liu</creator><creator>Tanaka, Masayuki</creator><creator>Okutomi, Masatoshi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Single-Image Noise Level Estimation for Blind Denoising</title><author>Xinhao Liu ; Tanaka, Masayuki ; Okutomi, Masatoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-a84bfec9d45e34bbe3a0426a431e563a6809f4c6df27160c636bbbd59e219e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>blind denoising</topic><topic>Covariance matrices</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>image gradient</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>low-rank patch</topic><topic>Noise</topic><topic>Noise control</topic><topic>Noise level</topic><topic>Noise level estimation</topic><topic>Noise measurement</topic><topic>Noise pollution</topic><topic>Noise reduction</topic><topic>PCA</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xinhao Liu</creatorcontrib><creatorcontrib>Tanaka, Masayuki</creatorcontrib><creatorcontrib>Okutomi, Masatoshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xinhao Liu</au><au>Tanaka, Masayuki</au><au>Okutomi, Masatoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Image Noise Level Estimation for Blind Denoising</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>22</volume><issue>12</issue><spage>5226</spage><epage>5237</epage><pages>5226-5237</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24108465</pmid><doi>10.1109/TIP.2013.2283400</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2013-12, Vol.22 (12), p.5226-5237
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_24108465
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
blind denoising
Covariance matrices
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Estimation
Exact sciences and technology
Gaussian noise
image gradient
Image processing
Information, signal and communications theory
low-rank patch
Noise
Noise control
Noise level
Noise level estimation
Noise measurement
Noise pollution
Noise reduction
PCA
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
title Single-Image Noise Level Estimation for Blind Denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Image%20Noise%20Level%20Estimation%20for%20Blind%20Denoising&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Xinhao%20Liu&rft.date=2013-12-01&rft.volume=22&rft.issue=12&rft.spage=5226&rft.epage=5237&rft.pages=5226-5237&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2283400&rft_dat=%3Cproquest_RIE%3E3095716811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441230700&rft_id=info:pmid/24108465&rft_ieee_id=6607209&rfr_iscdi=true