Single-Image Noise Level Estimation for Blind Denoising
Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2013-12, Vol.22 (12), p.5226-5237 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5237 |
---|---|
container_issue | 12 |
container_start_page | 5226 |
container_title | IEEE transactions on image processing |
container_volume | 22 |
creator | Xinhao Liu Tanaka, Masayuki Okutomi, Masatoshi |
description | Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels. |
doi_str_mv | 10.1109/TIP.2013.2283400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_24108465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6607209</ieee_id><sourcerecordid>3095716811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-a84bfec9d45e34bbe3a0426a431e563a6809f4c6df27160c636bbbd59e219e253</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AgipvTd0GQggi-dF5-NE0edU4dDBWczyVtr6Oja2fSCv73ZqxO8CEkkM8dd19CzimMKQV9u5i9jRlQPmZMcQFwQIZUCxoCCHbo3xDFYUyFHpAT51YAVERUHpMBExSUkNGQxO9lvawwnK3NEoOXpnQYzPELq2Dq2nJt2rKpg6KxwX1V1nnwgLUnvuSUHBWmcnjW3yPy8ThdTJ7D-evTbHI3DzMhVRsaJdICM52LCLlIU-TGjyaN4BQjyY1UoAuRybxgMZWQSS7TNM0jjYz6E_ERudn13djms0PXJuvSZVhVpsamc4nfSNNIar6lV__oquls7afzSlDGIQbwCnYqs41zFotkY_2e9juhkGxDTXyoyTbUpA_Vl1z2jbt0jfm-4DdFD657YFxmqsKaOivdn1OgFIuVdxc7VyLi_ltKiBlo_gMdu4T3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441230700</pqid></control><display><type>article</type><title>Single-Image Noise Level Estimation for Blind Denoising</title><source>IEEE Electronic Library (IEL)</source><creator>Xinhao Liu ; Tanaka, Masayuki ; Okutomi, Masatoshi</creator><creatorcontrib>Xinhao Liu ; Tanaka, Masayuki ; Okutomi, Masatoshi</creatorcontrib><description>Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2283400</identifier><identifier>PMID: 24108465</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; blind denoising ; Covariance matrices ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Estimation ; Exact sciences and technology ; Gaussian noise ; image gradient ; Image processing ; Information, signal and communications theory ; low-rank patch ; Noise ; Noise control ; Noise level ; Noise level estimation ; Noise measurement ; Noise pollution ; Noise reduction ; PCA ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2013-12, Vol.22 (12), p.5226-5237</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-a84bfec9d45e34bbe3a0426a431e563a6809f4c6df27160c636bbbd59e219e253</citedby><cites>FETCH-LOGICAL-c468t-a84bfec9d45e34bbe3a0426a431e563a6809f4c6df27160c636bbbd59e219e253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6607209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6607209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28088278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24108465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xinhao Liu</creatorcontrib><creatorcontrib>Tanaka, Masayuki</creatorcontrib><creatorcontrib>Okutomi, Masatoshi</creatorcontrib><title>Single-Image Noise Level Estimation for Blind Denoising</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>blind denoising</subject><subject>Covariance matrices</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>image gradient</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>low-rank patch</subject><subject>Noise</subject><subject>Noise control</subject><subject>Noise level</subject><subject>Noise level estimation</subject><subject>Noise measurement</subject><subject>Noise pollution</subject><subject>Noise reduction</subject><subject>PCA</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0N9LwzAQB_AgipvTd0GQggi-dF5-NE0edU4dDBWczyVtr6Oja2fSCv73ZqxO8CEkkM8dd19CzimMKQV9u5i9jRlQPmZMcQFwQIZUCxoCCHbo3xDFYUyFHpAT51YAVERUHpMBExSUkNGQxO9lvawwnK3NEoOXpnQYzPELq2Dq2nJt2rKpg6KxwX1V1nnwgLUnvuSUHBWmcnjW3yPy8ThdTJ7D-evTbHI3DzMhVRsaJdICM52LCLlIU-TGjyaN4BQjyY1UoAuRybxgMZWQSS7TNM0jjYz6E_ERudn13djms0PXJuvSZVhVpsamc4nfSNNIar6lV__oquls7afzSlDGIQbwCnYqs41zFotkY_2e9juhkGxDTXyoyTbUpA_Vl1z2jbt0jfm-4DdFD657YFxmqsKaOivdn1OgFIuVdxc7VyLi_ltKiBlo_gMdu4T3</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Xinhao Liu</creator><creator>Tanaka, Masayuki</creator><creator>Okutomi, Masatoshi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Single-Image Noise Level Estimation for Blind Denoising</title><author>Xinhao Liu ; Tanaka, Masayuki ; Okutomi, Masatoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-a84bfec9d45e34bbe3a0426a431e563a6809f4c6df27160c636bbbd59e219e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>blind denoising</topic><topic>Covariance matrices</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>image gradient</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>low-rank patch</topic><topic>Noise</topic><topic>Noise control</topic><topic>Noise level</topic><topic>Noise level estimation</topic><topic>Noise measurement</topic><topic>Noise pollution</topic><topic>Noise reduction</topic><topic>PCA</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xinhao Liu</creatorcontrib><creatorcontrib>Tanaka, Masayuki</creatorcontrib><creatorcontrib>Okutomi, Masatoshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xinhao Liu</au><au>Tanaka, Masayuki</au><au>Okutomi, Masatoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Image Noise Level Estimation for Blind Denoising</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>22</volume><issue>12</issue><spage>5226</spage><epage>5237</epage><pages>5226-5237</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24108465</pmid><doi>10.1109/TIP.2013.2283400</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2013-12, Vol.22 (12), p.5226-5237 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_24108465 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences blind denoising Covariance matrices Detection, estimation, filtering, equalization, prediction Eigenvalues and eigenfunctions Estimation Exact sciences and technology Gaussian noise image gradient Image processing Information, signal and communications theory low-rank patch Noise Noise control Noise level Noise level estimation Noise measurement Noise pollution Noise reduction PCA Signal and communications theory Signal processing Signal, noise Telecommunications and information theory |
title | Single-Image Noise Level Estimation for Blind Denoising |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Image%20Noise%20Level%20Estimation%20for%20Blind%20Denoising&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Xinhao%20Liu&rft.date=2013-12-01&rft.volume=22&rft.issue=12&rft.spage=5226&rft.epage=5237&rft.pages=5226-5237&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2283400&rft_dat=%3Cproquest_RIE%3E3095716811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441230700&rft_id=info:pmid/24108465&rft_ieee_id=6607209&rfr_iscdi=true |