Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions

How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2013-12, Vol.25 (12), p.3113-3130
Hauptverfasser: Franosch, Jan-Moritz P, Urban, Sebastian, van Hemmen, J. Leo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3130
container_issue 12
container_start_page 3113
container_title Neural computation
container_volume 25
creator Franosch, Jan-Moritz P
Urban, Sebastian
van Hemmen, J. Leo
description How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as “supervisor.” Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.
doi_str_mv 10.1162/NECO_a_00520
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24047322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1447496777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-8ed8ba8555c3b085202716564c442f8ea38a4c208d6309769dcf2773402ee82b3</originalsourceid><addsrcrecordid>eNptkc1v1DAQxS0EosvCjTOKxKUHAmPHX-G22raAtGoRLRI3y-tMkEviBDupKAf-dsxuQSvUkz3Sb96bp0fIcwqvKZXszfnp-sJYAyAYPCALKiootdZfHpIF6LoulZTqiDxJ6RoAJAXxmBwxDlxVjC3Ir8t5xHjjEzbF5ei_YXnlex--lic4YmgwTMXHzqbJOz_dvi1WGbKTHybsxyHarjjHOQ4hfzZoY8iLxae5w6IdYnE2B5fRUKzGMQ4_fG93kw1NcYLOpzykp-RRa7uEz-7eJfl8dnq1fl9uLt59WK82peMUplJjo7dWCyFctQWdkzJFpZDccc5ajbbSljsGupEV1ErWjWuZUhUHhqjZtlqS471uvuT7jGkyvU8Ou84GHOZkKOeK11LlnSV5-R96PcwxR9xRdTYXqs7Uqz3l4pBSxNaMMSeMt4aC-dOLOewl4y_uROdtj80_-G8RGVjtgd4fGAZ0ww0TnjJTARNUm5ycZn0Dtfnpxx1wYHJ8j8a99_wG762q3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449852579</pqid></control><display><type>article</type><title>Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Franosch, Jan-Moritz P ; Urban, Sebastian ; van Hemmen, J. Leo</creator><creatorcontrib>Franosch, Jan-Moritz P ; Urban, Sebastian ; van Hemmen, J. Leo</creatorcontrib><description>How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as “supervisor.” Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00520</identifier><identifier>PMID: 24047322</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animal behavior ; Animal cognition ; Approximation ; Brain - physiology ; Learning - physiology ; Neural Networks (Computer) ; Neuronal Plasticity - physiology ; Neurons</subject><ispartof>Neural computation, 2013-12, Vol.25 (12), p.3113-3130</ispartof><rights>Copyright MIT Press Journals Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-8ed8ba8555c3b085202716564c442f8ea38a4c208d6309769dcf2773402ee82b3</citedby><cites>FETCH-LOGICAL-c410t-8ed8ba8555c3b085202716564c442f8ea38a4c208d6309769dcf2773402ee82b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00520$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24047322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franosch, Jan-Moritz P</creatorcontrib><creatorcontrib>Urban, Sebastian</creatorcontrib><creatorcontrib>van Hemmen, J. Leo</creatorcontrib><title>Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as “supervisor.” Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.</description><subject>Algorithms</subject><subject>Animal behavior</subject><subject>Animal cognition</subject><subject>Approximation</subject><subject>Brain - physiology</subject><subject>Learning - physiology</subject><subject>Neural Networks (Computer)</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1v1DAQxS0EosvCjTOKxKUHAmPHX-G22raAtGoRLRI3y-tMkEviBDupKAf-dsxuQSvUkz3Sb96bp0fIcwqvKZXszfnp-sJYAyAYPCALKiootdZfHpIF6LoulZTqiDxJ6RoAJAXxmBwxDlxVjC3Ir8t5xHjjEzbF5ei_YXnlex--lic4YmgwTMXHzqbJOz_dvi1WGbKTHybsxyHarjjHOQ4hfzZoY8iLxae5w6IdYnE2B5fRUKzGMQ4_fG93kw1NcYLOpzykp-RRa7uEz-7eJfl8dnq1fl9uLt59WK82peMUplJjo7dWCyFctQWdkzJFpZDccc5ajbbSljsGupEV1ErWjWuZUhUHhqjZtlqS471uvuT7jGkyvU8Ou84GHOZkKOeK11LlnSV5-R96PcwxR9xRdTYXqs7Uqz3l4pBSxNaMMSeMt4aC-dOLOewl4y_uROdtj80_-G8RGVjtgd4fGAZ0ww0TnjJTARNUm5ycZn0Dtfnpxx1wYHJ8j8a99_wG762q3Q</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Franosch, Jan-Moritz P</creator><creator>Urban, Sebastian</creator><creator>van Hemmen, J. Leo</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions</title><author>Franosch, Jan-Moritz P ; Urban, Sebastian ; van Hemmen, J. Leo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-8ed8ba8555c3b085202716564c442f8ea38a4c208d6309769dcf2773402ee82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animal behavior</topic><topic>Animal cognition</topic><topic>Approximation</topic><topic>Brain - physiology</topic><topic>Learning - physiology</topic><topic>Neural Networks (Computer)</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franosch, Jan-Moritz P</creatorcontrib><creatorcontrib>Urban, Sebastian</creatorcontrib><creatorcontrib>van Hemmen, J. Leo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franosch, Jan-Moritz P</au><au>Urban, Sebastian</au><au>van Hemmen, J. Leo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>25</volume><issue>12</issue><spage>3113</spage><epage>3130</epage><pages>3113-3130</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as “supervisor.” Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>24047322</pmid><doi>10.1162/NECO_a_00520</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2013-12, Vol.25 (12), p.3113-3130
issn 0899-7667
1530-888X
language eng
recordid cdi_pubmed_primary_24047322
source MEDLINE; MIT Press Journals
subjects Algorithms
Animal behavior
Animal cognition
Approximation
Brain - physiology
Learning - physiology
Neural Networks (Computer)
Neuronal Plasticity - physiology
Neurons
title Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Spike-Timing-Dependent%20Plasticity:%20A%20Spatiotemporal%20Neuronal%20Learning%20Rule%20for%20Function%20Approximation%20and%20Decisions&rft.jtitle=Neural%20computation&rft.au=Franosch,%20Jan-Moritz%20P&rft.date=2013-12-01&rft.volume=25&rft.issue=12&rft.spage=3113&rft.epage=3130&rft.pages=3113-3130&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/NECO_a_00520&rft_dat=%3Cproquest_pubme%3E1447496777%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449852579&rft_id=info:pmid/24047322&rfr_iscdi=true