Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions
How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from...
Gespeichert in:
Veröffentlicht in: | Neural computation 2013-12, Vol.25 (12), p.3113-3130 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3130 |
---|---|
container_issue | 12 |
container_start_page | 3113 |
container_title | Neural computation |
container_volume | 25 |
creator | Franosch, Jan-Moritz P Urban, Sebastian van Hemmen, J. Leo |
description | How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as “supervisor.” Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input. |
doi_str_mv | 10.1162/NECO_a_00520 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24047322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1447496777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-8ed8ba8555c3b085202716564c442f8ea38a4c208d6309769dcf2773402ee82b3</originalsourceid><addsrcrecordid>eNptkc1v1DAQxS0EosvCjTOKxKUHAmPHX-G22raAtGoRLRI3y-tMkEviBDupKAf-dsxuQSvUkz3Sb96bp0fIcwqvKZXszfnp-sJYAyAYPCALKiootdZfHpIF6LoulZTqiDxJ6RoAJAXxmBwxDlxVjC3Ir8t5xHjjEzbF5ei_YXnlex--lic4YmgwTMXHzqbJOz_dvi1WGbKTHybsxyHarjjHOQ4hfzZoY8iLxae5w6IdYnE2B5fRUKzGMQ4_fG93kw1NcYLOpzykp-RRa7uEz-7eJfl8dnq1fl9uLt59WK82peMUplJjo7dWCyFctQWdkzJFpZDccc5ajbbSljsGupEV1ErWjWuZUhUHhqjZtlqS471uvuT7jGkyvU8Ou84GHOZkKOeK11LlnSV5-R96PcwxR9xRdTYXqs7Uqz3l4pBSxNaMMSeMt4aC-dOLOewl4y_uROdtj80_-G8RGVjtgd4fGAZ0ww0TnjJTARNUm5ycZn0Dtfnpxx1wYHJ8j8a99_wG762q3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449852579</pqid></control><display><type>article</type><title>Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Franosch, Jan-Moritz P ; Urban, Sebastian ; van Hemmen, J. Leo</creator><creatorcontrib>Franosch, Jan-Moritz P ; Urban, Sebastian ; van Hemmen, J. Leo</creatorcontrib><description>How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as “supervisor.” Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00520</identifier><identifier>PMID: 24047322</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animal behavior ; Animal cognition ; Approximation ; Brain - physiology ; Learning - physiology ; Neural Networks (Computer) ; Neuronal Plasticity - physiology ; Neurons</subject><ispartof>Neural computation, 2013-12, Vol.25 (12), p.3113-3130</ispartof><rights>Copyright MIT Press Journals Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-8ed8ba8555c3b085202716564c442f8ea38a4c208d6309769dcf2773402ee82b3</citedby><cites>FETCH-LOGICAL-c410t-8ed8ba8555c3b085202716564c442f8ea38a4c208d6309769dcf2773402ee82b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00520$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24047322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franosch, Jan-Moritz P</creatorcontrib><creatorcontrib>Urban, Sebastian</creatorcontrib><creatorcontrib>van Hemmen, J. Leo</creatorcontrib><title>Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as “supervisor.” Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.</description><subject>Algorithms</subject><subject>Animal behavior</subject><subject>Animal cognition</subject><subject>Approximation</subject><subject>Brain - physiology</subject><subject>Learning - physiology</subject><subject>Neural Networks (Computer)</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1v1DAQxS0EosvCjTOKxKUHAmPHX-G22raAtGoRLRI3y-tMkEviBDupKAf-dsxuQSvUkz3Sb96bp0fIcwqvKZXszfnp-sJYAyAYPCALKiootdZfHpIF6LoulZTqiDxJ6RoAJAXxmBwxDlxVjC3Ir8t5xHjjEzbF5ei_YXnlex--lic4YmgwTMXHzqbJOz_dvi1WGbKTHybsxyHarjjHOQ4hfzZoY8iLxae5w6IdYnE2B5fRUKzGMQ4_fG93kw1NcYLOpzykp-RRa7uEz-7eJfl8dnq1fl9uLt59WK82peMUplJjo7dWCyFctQWdkzJFpZDccc5ajbbSljsGupEV1ErWjWuZUhUHhqjZtlqS471uvuT7jGkyvU8Ou84GHOZkKOeK11LlnSV5-R96PcwxR9xRdTYXqs7Uqz3l4pBSxNaMMSeMt4aC-dOLOewl4y_uROdtj80_-G8RGVjtgd4fGAZ0ww0TnjJTARNUm5ycZn0Dtfnpxx1wYHJ8j8a99_wG762q3Q</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Franosch, Jan-Moritz P</creator><creator>Urban, Sebastian</creator><creator>van Hemmen, J. Leo</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions</title><author>Franosch, Jan-Moritz P ; Urban, Sebastian ; van Hemmen, J. Leo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-8ed8ba8555c3b085202716564c442f8ea38a4c208d6309769dcf2773402ee82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animal behavior</topic><topic>Animal cognition</topic><topic>Approximation</topic><topic>Brain - physiology</topic><topic>Learning - physiology</topic><topic>Neural Networks (Computer)</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franosch, Jan-Moritz P</creatorcontrib><creatorcontrib>Urban, Sebastian</creatorcontrib><creatorcontrib>van Hemmen, J. Leo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franosch, Jan-Moritz P</au><au>Urban, Sebastian</au><au>van Hemmen, J. Leo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>25</volume><issue>12</issue><spage>3113</spage><epage>3130</epage><pages>3113-3130</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as “supervisor.” Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>24047322</pmid><doi>10.1162/NECO_a_00520</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2013-12, Vol.25 (12), p.3113-3130 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_pubmed_primary_24047322 |
source | MEDLINE; MIT Press Journals |
subjects | Algorithms Animal behavior Animal cognition Approximation Brain - physiology Learning - physiology Neural Networks (Computer) Neuronal Plasticity - physiology Neurons |
title | Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Spike-Timing-Dependent%20Plasticity:%20A%20Spatiotemporal%20Neuronal%20Learning%20Rule%20for%20Function%20Approximation%20and%20Decisions&rft.jtitle=Neural%20computation&rft.au=Franosch,%20Jan-Moritz%20P&rft.date=2013-12-01&rft.volume=25&rft.issue=12&rft.spage=3113&rft.epage=3130&rft.pages=3113-3130&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/NECO_a_00520&rft_dat=%3Cproquest_pubme%3E1447496777%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449852579&rft_id=info:pmid/24047322&rfr_iscdi=true |