Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors

Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2013-12, Vol.22 (12), p.4952-4963
Hauptverfasser: Jagadeesh, Vignesh, Manjunath, Bangalore S., Anderson, James, Jones, Bryan W., Marc, Robert, Fisher, Steven K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4963
container_issue 12
container_start_page 4952
container_title IEEE transactions on image processing
container_volume 22
creator Jagadeesh, Vignesh
Manjunath, Bangalore S.
Anderson, James
Jones, Bryan W.
Marc, Robert
Fisher, Steven K.
description Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this problem by learning a prior model on topological dynamics that encourages segmentation transitions across frames that are most likely for a given application. Further, we augment a generic tracing technique with a locality sensitive prior derived from dense optic flow fields for deformation guidance. The proposed approach comprises two stages where the generic tracer initially yields multiple segmentation transitions when its parameters are perturbed, and the learnt topology prior subsequently propagates high scoring segmentations. Because the learnt topology model wraps around a generic tracer and adapts it by setting its free parameters, the need for careful parameter tuning is completely obviated. Through extensive experimental validation in surveillance, biological and medical image datasets, we verify the applicability of the proposed model while demonstrating good tracing performance under severe clutter.
doi_str_mv 10.1109/TIP.2013.2280002
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_23996562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6587473</ieee_id><sourcerecordid>3092286801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-247f8a267a05c415f423258e4b2c58326efe303d63dec7ff763110d5935711513</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3eBUECInhJ3e9NjrX4USi0aIvHsN3MlpQ2ibuJ4L93a2sFL7MD-8ww74PQJcF9QnB6PxtN-xQT1qc0wRjTI9QlKScxxpwehx4LFSvC0w46836FMeGCyFPUoSxNpZC0iyav1aL1TfQGyw2UjW6KqowetIc8mjltinIZzf226jIa5Lpuik-I3p2ua3CRrVw0KvP2B5u6onL-HJ1YvfZwsX97aP70OBu-xOPJ82g4GMeGKdXElCubaCqVxsJwIiynjIoE-IIakTAqwQLDLJcsB6OsVZKFwLlImVCECMJ66G63t3bVRwu-yTaFN7Be6xKq1mchaRqCKyYDevMPXVWtK8N1geLBGuMqDRTeUcZV3juwWe2KjXZfGcHZVnYWZGdb2dledhi53i9uFxvIDwO_dgNwuwe0N3ptnS5N4f-4BCcJFSJwVzuuAIDDtxSJ4oqxb6USjPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440023479</pqid></control><display><type>article</type><title>Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors</title><source>IEEE Electronic Library (IEL)</source><creator>Jagadeesh, Vignesh ; Manjunath, Bangalore S. ; Anderson, James ; Jones, Bryan W. ; Marc, Robert ; Fisher, Steven K.</creator><creatorcontrib>Jagadeesh, Vignesh ; Manjunath, Bangalore S. ; Anderson, James ; Jones, Bryan W. ; Marc, Robert ; Fisher, Steven K.</creatorcontrib><description>Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this problem by learning a prior model on topological dynamics that encourages segmentation transitions across frames that are most likely for a given application. Further, we augment a generic tracing technique with a locality sensitive prior derived from dense optic flow fields for deformation guidance. The proposed approach comprises two stages where the generic tracer initially yields multiple segmentation transitions when its parameters are perturbed, and the learnt topology prior subsequently propagates high scoring segmentations. Because the learnt topology model wraps around a generic tracer and adapts it by setting its free parameters, the need for careful parameter tuning is completely obviated. Through extensive experimental validation in surveillance, biological and medical image datasets, we verify the applicability of the proposed model while demonstrating good tracing performance under severe clutter.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2280002</identifier><identifier>PMID: 23996562</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptation models ; Algorithms ; Applied sciences ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Connectome ; electron micrograph ; Exact sciences and technology ; Facsimile ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Image sequences ; Information, signal and communications theory ; Markov Chains ; Markov random fields ; Mathematical model ; Medical management aid. Diagnosis aid ; Medical sciences ; Microscopy, Electron, Transmission ; Models, Theoretical ; parameter adaptation ; Reproducibility of Results ; Signal processing ; Surveillance ; Telecommunications and information theory ; Topology ; Tracing</subject><ispartof>IEEE transactions on image processing, 2013-12, Vol.22 (12), p.4952-4963</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-247f8a267a05c415f423258e4b2c58326efe303d63dec7ff763110d5935711513</citedby><cites>FETCH-LOGICAL-c377t-247f8a267a05c415f423258e4b2c58326efe303d63dec7ff763110d5935711513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6587473$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6587473$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28088255$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23996562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagadeesh, Vignesh</creatorcontrib><creatorcontrib>Manjunath, Bangalore S.</creatorcontrib><creatorcontrib>Anderson, James</creatorcontrib><creatorcontrib>Jones, Bryan W.</creatorcontrib><creatorcontrib>Marc, Robert</creatorcontrib><creatorcontrib>Fisher, Steven K.</creatorcontrib><title>Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this problem by learning a prior model on topological dynamics that encourages segmentation transitions across frames that are most likely for a given application. Further, we augment a generic tracing technique with a locality sensitive prior derived from dense optic flow fields for deformation guidance. The proposed approach comprises two stages where the generic tracer initially yields multiple segmentation transitions when its parameters are perturbed, and the learnt topology prior subsequently propagates high scoring segmentations. Because the learnt topology model wraps around a generic tracer and adapts it by setting its free parameters, the need for careful parameter tuning is completely obviated. Through extensive experimental validation in surveillance, biological and medical image datasets, we verify the applicability of the proposed model while demonstrating good tracing performance under severe clutter.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Connectome</subject><subject>electron micrograph</subject><subject>Exact sciences and technology</subject><subject>Facsimile</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Information, signal and communications theory</subject><subject>Markov Chains</subject><subject>Markov random fields</subject><subject>Mathematical model</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Theoretical</subject><subject>parameter adaptation</subject><subject>Reproducibility of Results</subject><subject>Signal processing</subject><subject>Surveillance</subject><subject>Telecommunications and information theory</subject><subject>Topology</subject><subject>Tracing</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3eBUECInhJ3e9NjrX4USi0aIvHsN3MlpQ2ibuJ4L93a2sFL7MD-8ww74PQJcF9QnB6PxtN-xQT1qc0wRjTI9QlKScxxpwehx4LFSvC0w46836FMeGCyFPUoSxNpZC0iyav1aL1TfQGyw2UjW6KqowetIc8mjltinIZzf226jIa5Lpuik-I3p2ua3CRrVw0KvP2B5u6onL-HJ1YvfZwsX97aP70OBu-xOPJ82g4GMeGKdXElCubaCqVxsJwIiynjIoE-IIakTAqwQLDLJcsB6OsVZKFwLlImVCECMJ66G63t3bVRwu-yTaFN7Be6xKq1mchaRqCKyYDevMPXVWtK8N1geLBGuMqDRTeUcZV3juwWe2KjXZfGcHZVnYWZGdb2dledhi53i9uFxvIDwO_dgNwuwe0N3ptnS5N4f-4BCcJFSJwVzuuAIDDtxSJ4oqxb6USjPk</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Jagadeesh, Vignesh</creator><creator>Manjunath, Bangalore S.</creator><creator>Anderson, James</creator><creator>Jones, Bryan W.</creator><creator>Marc, Robert</creator><creator>Fisher, Steven K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors</title><author>Jagadeesh, Vignesh ; Manjunath, Bangalore S. ; Anderson, James ; Jones, Bryan W. ; Marc, Robert ; Fisher, Steven K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-247f8a267a05c415f423258e4b2c58326efe303d63dec7ff763110d5935711513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Connectome</topic><topic>electron micrograph</topic><topic>Exact sciences and technology</topic><topic>Facsimile</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Information, signal and communications theory</topic><topic>Markov Chains</topic><topic>Markov random fields</topic><topic>Mathematical model</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Theoretical</topic><topic>parameter adaptation</topic><topic>Reproducibility of Results</topic><topic>Signal processing</topic><topic>Surveillance</topic><topic>Telecommunications and information theory</topic><topic>Topology</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagadeesh, Vignesh</creatorcontrib><creatorcontrib>Manjunath, Bangalore S.</creatorcontrib><creatorcontrib>Anderson, James</creatorcontrib><creatorcontrib>Jones, Bryan W.</creatorcontrib><creatorcontrib>Marc, Robert</creatorcontrib><creatorcontrib>Fisher, Steven K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jagadeesh, Vignesh</au><au>Manjunath, Bangalore S.</au><au>Anderson, James</au><au>Jones, Bryan W.</au><au>Marc, Robert</au><au>Fisher, Steven K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>22</volume><issue>12</issue><spage>4952</spage><epage>4963</epage><pages>4952-4963</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this problem by learning a prior model on topological dynamics that encourages segmentation transitions across frames that are most likely for a given application. Further, we augment a generic tracing technique with a locality sensitive prior derived from dense optic flow fields for deformation guidance. The proposed approach comprises two stages where the generic tracer initially yields multiple segmentation transitions when its parameters are perturbed, and the learnt topology prior subsequently propagates high scoring segmentations. Because the learnt topology model wraps around a generic tracer and adapts it by setting its free parameters, the need for careful parameter tuning is completely obviated. Through extensive experimental validation in surveillance, biological and medical image datasets, we verify the applicability of the proposed model while demonstrating good tracing performance under severe clutter.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23996562</pmid><doi>10.1109/TIP.2013.2280002</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2013-12, Vol.22 (12), p.4952-4963
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_23996562
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Applied sciences
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Connectome
electron micrograph
Exact sciences and technology
Facsimile
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Image sequences
Information, signal and communications theory
Markov Chains
Markov random fields
Mathematical model
Medical management aid. Diagnosis aid
Medical sciences
Microscopy, Electron, Transmission
Models, Theoretical
parameter adaptation
Reproducibility of Results
Signal processing
Surveillance
Telecommunications and information theory
Topology
Tracing
title Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Segmentation%20Based%20Tracing%20Using%20an%20Adaptive%20Wrapper%20for%20Inducing%20Priors&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jagadeesh,%20Vignesh&rft.date=2013-12-01&rft.volume=22&rft.issue=12&rft.spage=4952&rft.epage=4963&rft.pages=4952-4963&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2280002&rft_dat=%3Cproquest_RIE%3E3092286801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440023479&rft_id=info:pmid/23996562&rft_ieee_id=6587473&rfr_iscdi=true