Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors
Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this pro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2013-12, Vol.22 (12), p.4952-4963 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4963 |
---|---|
container_issue | 12 |
container_start_page | 4952 |
container_title | IEEE transactions on image processing |
container_volume | 22 |
creator | Jagadeesh, Vignesh Manjunath, Bangalore S. Anderson, James Jones, Bryan W. Marc, Robert Fisher, Steven K. |
description | Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this problem by learning a prior model on topological dynamics that encourages segmentation transitions across frames that are most likely for a given application. Further, we augment a generic tracing technique with a locality sensitive prior derived from dense optic flow fields for deformation guidance. The proposed approach comprises two stages where the generic tracer initially yields multiple segmentation transitions when its parameters are perturbed, and the learnt topology prior subsequently propagates high scoring segmentations. Because the learnt topology model wraps around a generic tracer and adapts it by setting its free parameters, the need for careful parameter tuning is completely obviated. Through extensive experimental validation in surveillance, biological and medical image datasets, we verify the applicability of the proposed model while demonstrating good tracing performance under severe clutter. |
doi_str_mv | 10.1109/TIP.2013.2280002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_23996562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6587473</ieee_id><sourcerecordid>3092286801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-247f8a267a05c415f423258e4b2c58326efe303d63dec7ff763110d5935711513</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3eBUECInhJ3e9NjrX4USi0aIvHsN3MlpQ2ibuJ4L93a2sFL7MD-8ww74PQJcF9QnB6PxtN-xQT1qc0wRjTI9QlKScxxpwehx4LFSvC0w46836FMeGCyFPUoSxNpZC0iyav1aL1TfQGyw2UjW6KqowetIc8mjltinIZzf226jIa5Lpuik-I3p2ua3CRrVw0KvP2B5u6onL-HJ1YvfZwsX97aP70OBu-xOPJ82g4GMeGKdXElCubaCqVxsJwIiynjIoE-IIakTAqwQLDLJcsB6OsVZKFwLlImVCECMJ66G63t3bVRwu-yTaFN7Be6xKq1mchaRqCKyYDevMPXVWtK8N1geLBGuMqDRTeUcZV3juwWe2KjXZfGcHZVnYWZGdb2dledhi53i9uFxvIDwO_dgNwuwe0N3ptnS5N4f-4BCcJFSJwVzuuAIDDtxSJ4oqxb6USjPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440023479</pqid></control><display><type>article</type><title>Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors</title><source>IEEE Electronic Library (IEL)</source><creator>Jagadeesh, Vignesh ; Manjunath, Bangalore S. ; Anderson, James ; Jones, Bryan W. ; Marc, Robert ; Fisher, Steven K.</creator><creatorcontrib>Jagadeesh, Vignesh ; Manjunath, Bangalore S. ; Anderson, James ; Jones, Bryan W. ; Marc, Robert ; Fisher, Steven K.</creatorcontrib><description>Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this problem by learning a prior model on topological dynamics that encourages segmentation transitions across frames that are most likely for a given application. Further, we augment a generic tracing technique with a locality sensitive prior derived from dense optic flow fields for deformation guidance. The proposed approach comprises two stages where the generic tracer initially yields multiple segmentation transitions when its parameters are perturbed, and the learnt topology prior subsequently propagates high scoring segmentations. Because the learnt topology model wraps around a generic tracer and adapts it by setting its free parameters, the need for careful parameter tuning is completely obviated. Through extensive experimental validation in surveillance, biological and medical image datasets, we verify the applicability of the proposed model while demonstrating good tracing performance under severe clutter.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2280002</identifier><identifier>PMID: 23996562</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptation models ; Algorithms ; Applied sciences ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Connectome ; electron micrograph ; Exact sciences and technology ; Facsimile ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Image sequences ; Information, signal and communications theory ; Markov Chains ; Markov random fields ; Mathematical model ; Medical management aid. Diagnosis aid ; Medical sciences ; Microscopy, Electron, Transmission ; Models, Theoretical ; parameter adaptation ; Reproducibility of Results ; Signal processing ; Surveillance ; Telecommunications and information theory ; Topology ; Tracing</subject><ispartof>IEEE transactions on image processing, 2013-12, Vol.22 (12), p.4952-4963</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-247f8a267a05c415f423258e4b2c58326efe303d63dec7ff763110d5935711513</citedby><cites>FETCH-LOGICAL-c377t-247f8a267a05c415f423258e4b2c58326efe303d63dec7ff763110d5935711513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6587473$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6587473$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28088255$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23996562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagadeesh, Vignesh</creatorcontrib><creatorcontrib>Manjunath, Bangalore S.</creatorcontrib><creatorcontrib>Anderson, James</creatorcontrib><creatorcontrib>Jones, Bryan W.</creatorcontrib><creatorcontrib>Marc, Robert</creatorcontrib><creatorcontrib>Fisher, Steven K.</creatorcontrib><title>Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this problem by learning a prior model on topological dynamics that encourages segmentation transitions across frames that are most likely for a given application. Further, we augment a generic tracing technique with a locality sensitive prior derived from dense optic flow fields for deformation guidance. The proposed approach comprises two stages where the generic tracer initially yields multiple segmentation transitions when its parameters are perturbed, and the learnt topology prior subsequently propagates high scoring segmentations. Because the learnt topology model wraps around a generic tracer and adapts it by setting its free parameters, the need for careful parameter tuning is completely obviated. Through extensive experimental validation in surveillance, biological and medical image datasets, we verify the applicability of the proposed model while demonstrating good tracing performance under severe clutter.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Connectome</subject><subject>electron micrograph</subject><subject>Exact sciences and technology</subject><subject>Facsimile</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Information, signal and communications theory</subject><subject>Markov Chains</subject><subject>Markov random fields</subject><subject>Mathematical model</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Theoretical</subject><subject>parameter adaptation</subject><subject>Reproducibility of Results</subject><subject>Signal processing</subject><subject>Surveillance</subject><subject>Telecommunications and information theory</subject><subject>Topology</subject><subject>Tracing</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3eBUECInhJ3e9NjrX4USi0aIvHsN3MlpQ2ibuJ4L93a2sFL7MD-8ww74PQJcF9QnB6PxtN-xQT1qc0wRjTI9QlKScxxpwehx4LFSvC0w46836FMeGCyFPUoSxNpZC0iyav1aL1TfQGyw2UjW6KqowetIc8mjltinIZzf226jIa5Lpuik-I3p2ua3CRrVw0KvP2B5u6onL-HJ1YvfZwsX97aP70OBu-xOPJ82g4GMeGKdXElCubaCqVxsJwIiynjIoE-IIakTAqwQLDLJcsB6OsVZKFwLlImVCECMJ66G63t3bVRwu-yTaFN7Be6xKq1mchaRqCKyYDevMPXVWtK8N1geLBGuMqDRTeUcZV3juwWe2KjXZfGcHZVnYWZGdb2dledhi53i9uFxvIDwO_dgNwuwe0N3ptnS5N4f-4BCcJFSJwVzuuAIDDtxSJ4oqxb6USjPk</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Jagadeesh, Vignesh</creator><creator>Manjunath, Bangalore S.</creator><creator>Anderson, James</creator><creator>Jones, Bryan W.</creator><creator>Marc, Robert</creator><creator>Fisher, Steven K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors</title><author>Jagadeesh, Vignesh ; Manjunath, Bangalore S. ; Anderson, James ; Jones, Bryan W. ; Marc, Robert ; Fisher, Steven K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-247f8a267a05c415f423258e4b2c58326efe303d63dec7ff763110d5935711513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Connectome</topic><topic>electron micrograph</topic><topic>Exact sciences and technology</topic><topic>Facsimile</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Information, signal and communications theory</topic><topic>Markov Chains</topic><topic>Markov random fields</topic><topic>Mathematical model</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Theoretical</topic><topic>parameter adaptation</topic><topic>Reproducibility of Results</topic><topic>Signal processing</topic><topic>Surveillance</topic><topic>Telecommunications and information theory</topic><topic>Topology</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagadeesh, Vignesh</creatorcontrib><creatorcontrib>Manjunath, Bangalore S.</creatorcontrib><creatorcontrib>Anderson, James</creatorcontrib><creatorcontrib>Jones, Bryan W.</creatorcontrib><creatorcontrib>Marc, Robert</creatorcontrib><creatorcontrib>Fisher, Steven K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jagadeesh, Vignesh</au><au>Manjunath, Bangalore S.</au><au>Anderson, James</au><au>Jones, Bryan W.</au><au>Marc, Robert</au><au>Fisher, Steven K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>22</volume><issue>12</issue><spage>4952</spage><epage>4963</epage><pages>4952-4963</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this problem by learning a prior model on topological dynamics that encourages segmentation transitions across frames that are most likely for a given application. Further, we augment a generic tracing technique with a locality sensitive prior derived from dense optic flow fields for deformation guidance. The proposed approach comprises two stages where the generic tracer initially yields multiple segmentation transitions when its parameters are perturbed, and the learnt topology prior subsequently propagates high scoring segmentations. Because the learnt topology model wraps around a generic tracer and adapts it by setting its free parameters, the need for careful parameter tuning is completely obviated. Through extensive experimental validation in surveillance, biological and medical image datasets, we verify the applicability of the proposed model while demonstrating good tracing performance under severe clutter.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23996562</pmid><doi>10.1109/TIP.2013.2280002</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2013-12, Vol.22 (12), p.4952-4963 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_23996562 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Algorithms Applied sciences Biological and medical sciences Computerized, statistical medical data processing and models in biomedicine Connectome electron micrograph Exact sciences and technology Facsimile Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Image sequences Information, signal and communications theory Markov Chains Markov random fields Mathematical model Medical management aid. Diagnosis aid Medical sciences Microscopy, Electron, Transmission Models, Theoretical parameter adaptation Reproducibility of Results Signal processing Surveillance Telecommunications and information theory Topology Tracing |
title | Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Segmentation%20Based%20Tracing%20Using%20an%20Adaptive%20Wrapper%20for%20Inducing%20Priors&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jagadeesh,%20Vignesh&rft.date=2013-12-01&rft.volume=22&rft.issue=12&rft.spage=4952&rft.epage=4963&rft.pages=4952-4963&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2280002&rft_dat=%3Cproquest_RIE%3E3092286801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440023479&rft_id=info:pmid/23996562&rft_ieee_id=6587473&rfr_iscdi=true |