Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum
Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the app...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanobioscience 2013-09, Vol.12 (3), p.214-221 |
---|---|
Hauptverfasser: | , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 3 |
container_start_page | 214 |
container_title | IEEE transactions on nanobioscience |
container_volume | 12 |
creator | Shuo Li Nyagilo, James O. Dave, Digant P. Gao, Jean X. |
description | Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the approaches fully rely on the intensities of Raman spectra and can not avoid the influences of the unstable background. In this paper we design a new continuous wavelet transform based PLSR (CWT-PLSR) algorithm that uses mixing concentrations and the average CWT coefficients of Raman spectra to carry out PLSR. We elaborate and prove how the average CWT coefficients with a Mexican hat mother wavelet are robust representations of Raman peaks, and the method can reduce the influences of unstable baseline and random noises during the prediction process. The algorithm was tested using three Raman spectra data sets with three cross-validation methods in comparison with current leading methods, and the results show its robustness and effectiveness. |
doi_str_mv | 10.1109/TNB.2013.2278288 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_23963247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6581897</ieee_id><sourcerecordid>3059250581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-48f8d81de12b3406f9aa13d4a018eaa80e85b7626a6e84c6eb29c197a7ff15083</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaD7ae6FQBLnk4q1GkmXpmCz9CCz9SLb0aGbtcXGwrY0kB_LfR9vd5pDTG5jfPHjzGHsPYgEg3Kf196uFFKAWUlZWWvuKnUBZ2kIa5V7vZmUKkBqO2WmMd0JAZUr3hh1L5YySujphfumn1E-znyP_gw80UOLrgFPsfBj5FUZq-U8MqceBrwhj4rf3MwaK_Ib-Zom9n3hm-a8Zs1HC1D8Qv5xweIx95L7jNzjixG-31KQwj2_ZUYdDpHcHPWO_v3xeL78Vqx9fr5eXq6JRTqdC2862FloCuVFamM4hgmo1CrCEaAXZclMZadCQ1Y2hjXQNuAqrroNSWHXGLva-2-DvZ4qpHvvY0DDgRDlrDVrmFzgDLqPnL9A7P4ec4B9lHYhKQ6bEnmqCjzFQV29DP2J4rEHUuzLqXEa9K6M-lJFPPh6M581I7fPB_-9n4MMe6InoeW1KC9ZV6gnMv442</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1428910741</pqid></control><display><type>magazinearticle</type><title>Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum</title><source>IEEE Electronic Library (IEL)</source><creator>Shuo Li ; Nyagilo, James O. ; Dave, Digant P. ; Gao, Jean X.</creator><creatorcontrib>Shuo Li ; Nyagilo, James O. ; Dave, Digant P. ; Gao, Jean X.</creatorcontrib><description>Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the approaches fully rely on the intensities of Raman spectra and can not avoid the influences of the unstable background. In this paper we design a new continuous wavelet transform based PLSR (CWT-PLSR) algorithm that uses mixing concentrations and the average CWT coefficients of Raman spectra to carry out PLSR. We elaborate and prove how the average CWT coefficients with a Mexican hat mother wavelet are robust representations of Raman peaks, and the method can reduce the influences of unstable baseline and random noises during the prediction process. The algorithm was tested using three Raman spectra data sets with three cross-validation methods in comparison with current leading methods, and the results show its robustness and effectiveness.</description><identifier>ISSN: 1536-1241</identifier><identifier>EISSN: 1558-2639</identifier><identifier>DOI: 10.1109/TNB.2013.2278288</identifier><identifier>PMID: 23963247</identifier><identifier>CODEN: ITMCEL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Calibration ; Continuous wavelet transforms ; CWT ; Least-Squares Analysis ; Methods ; Noise ; Noise measurement ; PLSR ; Quantitative Analysis ; Quartz ; Raman scattering ; Raman spectrum ; Reproducibility of Results ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Statistical analysis ; Studies ; Testing ; Wavelet Analysis ; Wavelet transforms</subject><ispartof>IEEE transactions on nanobioscience, 2013-09, Vol.12 (3), p.214-221</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-48f8d81de12b3406f9aa13d4a018eaa80e85b7626a6e84c6eb29c197a7ff15083</citedby><cites>FETCH-LOGICAL-c394t-48f8d81de12b3406f9aa13d4a018eaa80e85b7626a6e84c6eb29c197a7ff15083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6581897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>781,785,797,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6581897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23963247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shuo Li</creatorcontrib><creatorcontrib>Nyagilo, James O.</creatorcontrib><creatorcontrib>Dave, Digant P.</creatorcontrib><creatorcontrib>Gao, Jean X.</creatorcontrib><title>Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum</title><title>IEEE transactions on nanobioscience</title><addtitle>TNB</addtitle><addtitle>IEEE Trans Nanobioscience</addtitle><description>Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the approaches fully rely on the intensities of Raman spectra and can not avoid the influences of the unstable background. In this paper we design a new continuous wavelet transform based PLSR (CWT-PLSR) algorithm that uses mixing concentrations and the average CWT coefficients of Raman spectra to carry out PLSR. We elaborate and prove how the average CWT coefficients with a Mexican hat mother wavelet are robust representations of Raman peaks, and the method can reduce the influences of unstable baseline and random noises during the prediction process. The algorithm was tested using three Raman spectra data sets with three cross-validation methods in comparison with current leading methods, and the results show its robustness and effectiveness.</description><subject>Calibration</subject><subject>Continuous wavelet transforms</subject><subject>CWT</subject><subject>Least-Squares Analysis</subject><subject>Methods</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>PLSR</subject><subject>Quantitative Analysis</subject><subject>Quartz</subject><subject>Raman scattering</subject><subject>Raman spectrum</subject><subject>Reproducibility of Results</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Testing</subject><subject>Wavelet Analysis</subject><subject>Wavelet transforms</subject><issn>1536-1241</issn><issn>1558-2639</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2013</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaD7ae6FQBLnk4q1GkmXpmCz9CCz9SLb0aGbtcXGwrY0kB_LfR9vd5pDTG5jfPHjzGHsPYgEg3Kf196uFFKAWUlZWWvuKnUBZ2kIa5V7vZmUKkBqO2WmMd0JAZUr3hh1L5YySujphfumn1E-znyP_gw80UOLrgFPsfBj5FUZq-U8MqceBrwhj4rf3MwaK_Ib-Zom9n3hm-a8Zs1HC1D8Qv5xweIx95L7jNzjixG-31KQwj2_ZUYdDpHcHPWO_v3xeL78Vqx9fr5eXq6JRTqdC2862FloCuVFamM4hgmo1CrCEaAXZclMZadCQ1Y2hjXQNuAqrroNSWHXGLva-2-DvZ4qpHvvY0DDgRDlrDVrmFzgDLqPnL9A7P4ec4B9lHYhKQ6bEnmqCjzFQV29DP2J4rEHUuzLqXEa9K6M-lJFPPh6M581I7fPB_-9n4MMe6InoeW1KC9ZV6gnMv442</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Shuo Li</creator><creator>Nyagilo, James O.</creator><creator>Dave, Digant P.</creator><creator>Gao, Jean X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130901</creationdate><title>Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum</title><author>Shuo Li ; Nyagilo, James O. ; Dave, Digant P. ; Gao, Jean X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-48f8d81de12b3406f9aa13d4a018eaa80e85b7626a6e84c6eb29c197a7ff15083</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Calibration</topic><topic>Continuous wavelet transforms</topic><topic>CWT</topic><topic>Least-Squares Analysis</topic><topic>Methods</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>PLSR</topic><topic>Quantitative Analysis</topic><topic>Quartz</topic><topic>Raman scattering</topic><topic>Raman spectrum</topic><topic>Reproducibility of Results</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Testing</topic><topic>Wavelet Analysis</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Shuo Li</creatorcontrib><creatorcontrib>Nyagilo, James O.</creatorcontrib><creatorcontrib>Dave, Digant P.</creatorcontrib><creatorcontrib>Gao, Jean X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on nanobioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuo Li</au><au>Nyagilo, James O.</au><au>Dave, Digant P.</au><au>Gao, Jean X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum</atitle><jtitle>IEEE transactions on nanobioscience</jtitle><stitle>TNB</stitle><addtitle>IEEE Trans Nanobioscience</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>12</volume><issue>3</issue><spage>214</spage><epage>221</epage><pages>214-221</pages><issn>1536-1241</issn><eissn>1558-2639</eissn><coden>ITMCEL</coden><abstract>Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the approaches fully rely on the intensities of Raman spectra and can not avoid the influences of the unstable background. In this paper we design a new continuous wavelet transform based PLSR (CWT-PLSR) algorithm that uses mixing concentrations and the average CWT coefficients of Raman spectra to carry out PLSR. We elaborate and prove how the average CWT coefficients with a Mexican hat mother wavelet are robust representations of Raman peaks, and the method can reduce the influences of unstable baseline and random noises during the prediction process. The algorithm was tested using three Raman spectra data sets with three cross-validation methods in comparison with current leading methods, and the results show its robustness and effectiveness.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23963247</pmid><doi>10.1109/TNB.2013.2278288</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1241 |
ispartof | IEEE transactions on nanobioscience, 2013-09, Vol.12 (3), p.214-221 |
issn | 1536-1241 1558-2639 |
language | eng |
recordid | cdi_pubmed_primary_23963247 |
source | IEEE Electronic Library (IEL) |
subjects | Calibration Continuous wavelet transforms CWT Least-Squares Analysis Methods Noise Noise measurement PLSR Quantitative Analysis Quartz Raman scattering Raman spectrum Reproducibility of Results Spectrum analysis Spectrum Analysis, Raman - methods Statistical analysis Studies Testing Wavelet Analysis Wavelet transforms |
title | Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Wavelet%20Transform%20Based%20Partial%20Least%20Squares%20Regression%20for%20Quantitative%20Analysis%20of%20Raman%20Spectrum&rft.jtitle=IEEE%20transactions%20on%20nanobioscience&rft.au=Shuo%20Li&rft.date=2013-09-01&rft.volume=12&rft.issue=3&rft.spage=214&rft.epage=221&rft.pages=214-221&rft.issn=1536-1241&rft.eissn=1558-2639&rft.coden=ITMCEL&rft_id=info:doi/10.1109/TNB.2013.2278288&rft_dat=%3Cproquest_RIE%3E3059250581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428910741&rft_id=info:pmid/23963247&rft_ieee_id=6581897&rfr_iscdi=true |