Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum

Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanobioscience 2013-09, Vol.12 (3), p.214-221
Hauptverfasser: Shuo Li, Nyagilo, James O., Dave, Digant P., Gao, Jean X.
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 3
container_start_page 214
container_title IEEE transactions on nanobioscience
container_volume 12
creator Shuo Li
Nyagilo, James O.
Dave, Digant P.
Gao, Jean X.
description Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the approaches fully rely on the intensities of Raman spectra and can not avoid the influences of the unstable background. In this paper we design a new continuous wavelet transform based PLSR (CWT-PLSR) algorithm that uses mixing concentrations and the average CWT coefficients of Raman spectra to carry out PLSR. We elaborate and prove how the average CWT coefficients with a Mexican hat mother wavelet are robust representations of Raman peaks, and the method can reduce the influences of unstable baseline and random noises during the prediction process. The algorithm was tested using three Raman spectra data sets with three cross-validation methods in comparison with current leading methods, and the results show its robustness and effectiveness.
doi_str_mv 10.1109/TNB.2013.2278288
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_23963247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6581897</ieee_id><sourcerecordid>3059250581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-48f8d81de12b3406f9aa13d4a018eaa80e85b7626a6e84c6eb29c197a7ff15083</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaD7ae6FQBLnk4q1GkmXpmCz9CCz9SLb0aGbtcXGwrY0kB_LfR9vd5pDTG5jfPHjzGHsPYgEg3Kf196uFFKAWUlZWWvuKnUBZ2kIa5V7vZmUKkBqO2WmMd0JAZUr3hh1L5YySujphfumn1E-znyP_gw80UOLrgFPsfBj5FUZq-U8MqceBrwhj4rf3MwaK_Ib-Zom9n3hm-a8Zs1HC1D8Qv5xweIx95L7jNzjixG-31KQwj2_ZUYdDpHcHPWO_v3xeL78Vqx9fr5eXq6JRTqdC2862FloCuVFamM4hgmo1CrCEaAXZclMZadCQ1Y2hjXQNuAqrroNSWHXGLva-2-DvZ4qpHvvY0DDgRDlrDVrmFzgDLqPnL9A7P4ec4B9lHYhKQ6bEnmqCjzFQV29DP2J4rEHUuzLqXEa9K6M-lJFPPh6M581I7fPB_-9n4MMe6InoeW1KC9ZV6gnMv442</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1428910741</pqid></control><display><type>magazinearticle</type><title>Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum</title><source>IEEE Electronic Library (IEL)</source><creator>Shuo Li ; Nyagilo, James O. ; Dave, Digant P. ; Gao, Jean X.</creator><creatorcontrib>Shuo Li ; Nyagilo, James O. ; Dave, Digant P. ; Gao, Jean X.</creatorcontrib><description>Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the approaches fully rely on the intensities of Raman spectra and can not avoid the influences of the unstable background. In this paper we design a new continuous wavelet transform based PLSR (CWT-PLSR) algorithm that uses mixing concentrations and the average CWT coefficients of Raman spectra to carry out PLSR. We elaborate and prove how the average CWT coefficients with a Mexican hat mother wavelet are robust representations of Raman peaks, and the method can reduce the influences of unstable baseline and random noises during the prediction process. The algorithm was tested using three Raman spectra data sets with three cross-validation methods in comparison with current leading methods, and the results show its robustness and effectiveness.</description><identifier>ISSN: 1536-1241</identifier><identifier>EISSN: 1558-2639</identifier><identifier>DOI: 10.1109/TNB.2013.2278288</identifier><identifier>PMID: 23963247</identifier><identifier>CODEN: ITMCEL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Calibration ; Continuous wavelet transforms ; CWT ; Least-Squares Analysis ; Methods ; Noise ; Noise measurement ; PLSR ; Quantitative Analysis ; Quartz ; Raman scattering ; Raman spectrum ; Reproducibility of Results ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Statistical analysis ; Studies ; Testing ; Wavelet Analysis ; Wavelet transforms</subject><ispartof>IEEE transactions on nanobioscience, 2013-09, Vol.12 (3), p.214-221</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-48f8d81de12b3406f9aa13d4a018eaa80e85b7626a6e84c6eb29c197a7ff15083</citedby><cites>FETCH-LOGICAL-c394t-48f8d81de12b3406f9aa13d4a018eaa80e85b7626a6e84c6eb29c197a7ff15083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6581897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>781,785,797,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6581897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23963247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shuo Li</creatorcontrib><creatorcontrib>Nyagilo, James O.</creatorcontrib><creatorcontrib>Dave, Digant P.</creatorcontrib><creatorcontrib>Gao, Jean X.</creatorcontrib><title>Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum</title><title>IEEE transactions on nanobioscience</title><addtitle>TNB</addtitle><addtitle>IEEE Trans Nanobioscience</addtitle><description>Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the approaches fully rely on the intensities of Raman spectra and can not avoid the influences of the unstable background. In this paper we design a new continuous wavelet transform based PLSR (CWT-PLSR) algorithm that uses mixing concentrations and the average CWT coefficients of Raman spectra to carry out PLSR. We elaborate and prove how the average CWT coefficients with a Mexican hat mother wavelet are robust representations of Raman peaks, and the method can reduce the influences of unstable baseline and random noises during the prediction process. The algorithm was tested using three Raman spectra data sets with three cross-validation methods in comparison with current leading methods, and the results show its robustness and effectiveness.</description><subject>Calibration</subject><subject>Continuous wavelet transforms</subject><subject>CWT</subject><subject>Least-Squares Analysis</subject><subject>Methods</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>PLSR</subject><subject>Quantitative Analysis</subject><subject>Quartz</subject><subject>Raman scattering</subject><subject>Raman spectrum</subject><subject>Reproducibility of Results</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Testing</subject><subject>Wavelet Analysis</subject><subject>Wavelet transforms</subject><issn>1536-1241</issn><issn>1558-2639</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2013</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaD7ae6FQBLnk4q1GkmXpmCz9CCz9SLb0aGbtcXGwrY0kB_LfR9vd5pDTG5jfPHjzGHsPYgEg3Kf196uFFKAWUlZWWvuKnUBZ2kIa5V7vZmUKkBqO2WmMd0JAZUr3hh1L5YySujphfumn1E-znyP_gw80UOLrgFPsfBj5FUZq-U8MqceBrwhj4rf3MwaK_Ib-Zom9n3hm-a8Zs1HC1D8Qv5xweIx95L7jNzjixG-31KQwj2_ZUYdDpHcHPWO_v3xeL78Vqx9fr5eXq6JRTqdC2862FloCuVFamM4hgmo1CrCEaAXZclMZadCQ1Y2hjXQNuAqrroNSWHXGLva-2-DvZ4qpHvvY0DDgRDlrDVrmFzgDLqPnL9A7P4ec4B9lHYhKQ6bEnmqCjzFQV29DP2J4rEHUuzLqXEa9K6M-lJFPPh6M581I7fPB_-9n4MMe6InoeW1KC9ZV6gnMv442</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Shuo Li</creator><creator>Nyagilo, James O.</creator><creator>Dave, Digant P.</creator><creator>Gao, Jean X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130901</creationdate><title>Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum</title><author>Shuo Li ; Nyagilo, James O. ; Dave, Digant P. ; Gao, Jean X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-48f8d81de12b3406f9aa13d4a018eaa80e85b7626a6e84c6eb29c197a7ff15083</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Calibration</topic><topic>Continuous wavelet transforms</topic><topic>CWT</topic><topic>Least-Squares Analysis</topic><topic>Methods</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>PLSR</topic><topic>Quantitative Analysis</topic><topic>Quartz</topic><topic>Raman scattering</topic><topic>Raman spectrum</topic><topic>Reproducibility of Results</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Testing</topic><topic>Wavelet Analysis</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Shuo Li</creatorcontrib><creatorcontrib>Nyagilo, James O.</creatorcontrib><creatorcontrib>Dave, Digant P.</creatorcontrib><creatorcontrib>Gao, Jean X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on nanobioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuo Li</au><au>Nyagilo, James O.</au><au>Dave, Digant P.</au><au>Gao, Jean X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum</atitle><jtitle>IEEE transactions on nanobioscience</jtitle><stitle>TNB</stitle><addtitle>IEEE Trans Nanobioscience</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>12</volume><issue>3</issue><spage>214</spage><epage>221</epage><pages>214-221</pages><issn>1536-1241</issn><eissn>1558-2639</eissn><coden>ITMCEL</coden><abstract>Quantitative analysis of Raman spectra using surface-enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in in vivo molecular imaging. Partial least square regression (PLSR) methods have been reported as state-of-the-art methods. However, the approaches fully rely on the intensities of Raman spectra and can not avoid the influences of the unstable background. In this paper we design a new continuous wavelet transform based PLSR (CWT-PLSR) algorithm that uses mixing concentrations and the average CWT coefficients of Raman spectra to carry out PLSR. We elaborate and prove how the average CWT coefficients with a Mexican hat mother wavelet are robust representations of Raman peaks, and the method can reduce the influences of unstable baseline and random noises during the prediction process. The algorithm was tested using three Raman spectra data sets with three cross-validation methods in comparison with current leading methods, and the results show its robustness and effectiveness.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23963247</pmid><doi>10.1109/TNB.2013.2278288</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1241
ispartof IEEE transactions on nanobioscience, 2013-09, Vol.12 (3), p.214-221
issn 1536-1241
1558-2639
language eng
recordid cdi_pubmed_primary_23963247
source IEEE Electronic Library (IEL)
subjects Calibration
Continuous wavelet transforms
CWT
Least-Squares Analysis
Methods
Noise
Noise measurement
PLSR
Quantitative Analysis
Quartz
Raman scattering
Raman spectrum
Reproducibility of Results
Spectrum analysis
Spectrum Analysis, Raman - methods
Statistical analysis
Studies
Testing
Wavelet Analysis
Wavelet transforms
title Continuous Wavelet Transform Based Partial Least Squares Regression for Quantitative Analysis of Raman Spectrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Wavelet%20Transform%20Based%20Partial%20Least%20Squares%20Regression%20for%20Quantitative%20Analysis%20of%20Raman%20Spectrum&rft.jtitle=IEEE%20transactions%20on%20nanobioscience&rft.au=Shuo%20Li&rft.date=2013-09-01&rft.volume=12&rft.issue=3&rft.spage=214&rft.epage=221&rft.pages=214-221&rft.issn=1536-1241&rft.eissn=1558-2639&rft.coden=ITMCEL&rft_id=info:doi/10.1109/TNB.2013.2278288&rft_dat=%3Cproquest_RIE%3E3059250581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428910741&rft_id=info:pmid/23963247&rft_ieee_id=6581897&rfr_iscdi=true