Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery
Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2013-12, Vol.22 (12), p.4652-4663 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4663 |
---|---|
container_issue | 12 |
container_start_page | 4652 |
container_title | IEEE transactions on image processing |
container_volume | 22 |
creator | Qiegen Liu Shanshan Wang Ying, Leslie Xi Peng Yanjie Zhu Dong Liang |
description | Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches. |
doi_str_mv | 10.1109/TIP.2013.2277798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_23955749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6578193</ieee_id><sourcerecordid>1448777840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-a9423229a17e6327249ef173e32b4ba9f685d8713fae94d5b6c7e0640b17468b3</originalsourceid><addsrcrecordid>eNqN0UtLxDAQB_Agiu-7IEhBBC9dZ5K0SY6Lz4UFxce5pO1UItt2TbqC394suyp48pSQ_GZg5s_YEcIIEczF8-RhxAHFiHOllNEbbBeNxBRA8s14h0ylCqXZYXshvAGgzDDfZjtcmCxT0uyyybi288F9UHLlqsH1nfWfyZSs71z3mrgueZpbHyi59bZ21A3JVd_a-Nz0Ppm09pWSR6r6D_KfB2yrsbNAh-tzn73cXD9f3qXT-9vJ5XiaVhJhSK2RXHBuLCrKBVdcGmpQCRK8lKU1Ta6zWisUjSUj66zMK0WQSyhRyVyXYp-dr_rOff--oDAUrQsVzWa2o34RCpRSx2VoCf-hQgrgoCI9_UPf-oXv4iBRKSHiKsVSwUpVvg_BU1PMvWvjygqEYplIERMplokU60Riycm68aJsqf4p-I4ggrM1sKGys8bbrnLh12nQmguM7njlHBH9fOeZ0miE-AI505jl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473310537</pqid></control><display><type>article</type><title>Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery</title><source>IEEE Electronic Library (IEL)</source><creator>Qiegen Liu ; Shanshan Wang ; Ying, Leslie ; Xi Peng ; Yanjie Zhu ; Dong Liang</creator><creatorcontrib>Qiegen Liu ; Shanshan Wang ; Ying, Leslie ; Xi Peng ; Yanjie Zhu ; Dong Liang</creatorcontrib><description>Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2277798</identifier><identifier>PMID: 23955749</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; alternating direction method of multipliers ; Applied sciences ; Biological and medical sciences ; Compressed sensing ; Computerized, statistical medical data processing and models in biomedicine ; Dictionaries ; dictionary learning ; Exact sciences and technology ; gradient images ; Image processing ; Image reconstruction ; Information, signal and communications theory ; Iterative methods ; Learning ; Medical management aid. Diagnosis aid ; Medical sciences ; Minimization ; Optimization ; Recovery ; Sampling, quantization ; Signal and communications theory ; Signal processing ; sparse representation ; splitting Bregman method ; Telecommunications and information theory ; Television ; total variation ; Trains ; Transforms</subject><ispartof>IEEE transactions on image processing, 2013-12, Vol.22 (12), p.4652-4663</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-a9423229a17e6327249ef173e32b4ba9f685d8713fae94d5b6c7e0640b17468b3</citedby><cites>FETCH-LOGICAL-c410t-a9423229a17e6327249ef173e32b4ba9f685d8713fae94d5b6c7e0640b17468b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6578193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6578193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28088231$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23955749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiegen Liu</creatorcontrib><creatorcontrib>Shanshan Wang</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><creatorcontrib>Xi Peng</creatorcontrib><creatorcontrib>Yanjie Zhu</creatorcontrib><creatorcontrib>Dong Liang</creatorcontrib><title>Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches.</description><subject>Algorithms</subject><subject>alternating direction method of multipliers</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Compressed sensing</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Exact sciences and technology</subject><subject>gradient images</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Information, signal and communications theory</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Recovery</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>sparse representation</subject><subject>splitting Bregman method</subject><subject>Telecommunications and information theory</subject><subject>Television</subject><subject>total variation</subject><subject>Trains</subject><subject>Transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLxDAQB_Agiu-7IEhBBC9dZ5K0SY6Lz4UFxce5pO1UItt2TbqC394suyp48pSQ_GZg5s_YEcIIEczF8-RhxAHFiHOllNEbbBeNxBRA8s14h0ylCqXZYXshvAGgzDDfZjtcmCxT0uyyybi288F9UHLlqsH1nfWfyZSs71z3mrgueZpbHyi59bZ21A3JVd_a-Nz0Ppm09pWSR6r6D_KfB2yrsbNAh-tzn73cXD9f3qXT-9vJ5XiaVhJhSK2RXHBuLCrKBVdcGmpQCRK8lKU1Ta6zWisUjSUj66zMK0WQSyhRyVyXYp-dr_rOff--oDAUrQsVzWa2o34RCpRSx2VoCf-hQgrgoCI9_UPf-oXv4iBRKSHiKsVSwUpVvg_BU1PMvWvjygqEYplIERMplokU60Riycm68aJsqf4p-I4ggrM1sKGys8bbrnLh12nQmguM7njlHBH9fOeZ0miE-AI505jl</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Qiegen Liu</creator><creator>Shanshan Wang</creator><creator>Ying, Leslie</creator><creator>Xi Peng</creator><creator>Yanjie Zhu</creator><creator>Dong Liang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20131201</creationdate><title>Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery</title><author>Qiegen Liu ; Shanshan Wang ; Ying, Leslie ; Xi Peng ; Yanjie Zhu ; Dong Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-a9423229a17e6327249ef173e32b4ba9f685d8713fae94d5b6c7e0640b17468b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>alternating direction method of multipliers</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Compressed sensing</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Exact sciences and technology</topic><topic>gradient images</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Information, signal and communications theory</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Recovery</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>sparse representation</topic><topic>splitting Bregman method</topic><topic>Telecommunications and information theory</topic><topic>Television</topic><topic>total variation</topic><topic>Trains</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiegen Liu</creatorcontrib><creatorcontrib>Shanshan Wang</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><creatorcontrib>Xi Peng</creatorcontrib><creatorcontrib>Yanjie Zhu</creatorcontrib><creatorcontrib>Dong Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiegen Liu</au><au>Shanshan Wang</au><au>Ying, Leslie</au><au>Xi Peng</au><au>Yanjie Zhu</au><au>Dong Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>22</volume><issue>12</issue><spage>4652</spage><epage>4663</epage><pages>4652-4663</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23955749</pmid><doi>10.1109/TIP.2013.2277798</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2013-12, Vol.22 (12), p.4652-4663 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_23955749 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms alternating direction method of multipliers Applied sciences Biological and medical sciences Compressed sensing Computerized, statistical medical data processing and models in biomedicine Dictionaries dictionary learning Exact sciences and technology gradient images Image processing Image reconstruction Information, signal and communications theory Iterative methods Learning Medical management aid. Diagnosis aid Medical sciences Minimization Optimization Recovery Sampling, quantization Signal and communications theory Signal processing sparse representation splitting Bregman method Telecommunications and information theory Television total variation Trains Transforms |
title | Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dictionary%20Learning%20in%20Sparse%20Gradient%20Domain%20for%20Image%20Recovery&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Qiegen%20Liu&rft.date=2013-12-01&rft.volume=22&rft.issue=12&rft.spage=4652&rft.epage=4663&rft.pages=4652-4663&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2277798&rft_dat=%3Cproquest_RIE%3E1448777840%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473310537&rft_id=info:pmid/23955749&rft_ieee_id=6578193&rfr_iscdi=true |