Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery

Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2013-12, Vol.22 (12), p.4652-4663
Hauptverfasser: Qiegen Liu, Shanshan Wang, Ying, Leslie, Xi Peng, Yanjie Zhu, Dong Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4663
container_issue 12
container_start_page 4652
container_title IEEE transactions on image processing
container_volume 22
creator Qiegen Liu
Shanshan Wang
Ying, Leslie
Xi Peng
Yanjie Zhu
Dong Liang
description Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches.
doi_str_mv 10.1109/TIP.2013.2277798
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_23955749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6578193</ieee_id><sourcerecordid>1448777840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-a9423229a17e6327249ef173e32b4ba9f685d8713fae94d5b6c7e0640b17468b3</originalsourceid><addsrcrecordid>eNqN0UtLxDAQB_Agiu-7IEhBBC9dZ5K0SY6Lz4UFxce5pO1UItt2TbqC394suyp48pSQ_GZg5s_YEcIIEczF8-RhxAHFiHOllNEbbBeNxBRA8s14h0ylCqXZYXshvAGgzDDfZjtcmCxT0uyyybi288F9UHLlqsH1nfWfyZSs71z3mrgueZpbHyi59bZ21A3JVd_a-Nz0Ppm09pWSR6r6D_KfB2yrsbNAh-tzn73cXD9f3qXT-9vJ5XiaVhJhSK2RXHBuLCrKBVdcGmpQCRK8lKU1Ta6zWisUjSUj66zMK0WQSyhRyVyXYp-dr_rOff--oDAUrQsVzWa2o34RCpRSx2VoCf-hQgrgoCI9_UPf-oXv4iBRKSHiKsVSwUpVvg_BU1PMvWvjygqEYplIERMplokU60Riycm68aJsqf4p-I4ggrM1sKGys8bbrnLh12nQmguM7njlHBH9fOeZ0miE-AI505jl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473310537</pqid></control><display><type>article</type><title>Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery</title><source>IEEE Electronic Library (IEL)</source><creator>Qiegen Liu ; Shanshan Wang ; Ying, Leslie ; Xi Peng ; Yanjie Zhu ; Dong Liang</creator><creatorcontrib>Qiegen Liu ; Shanshan Wang ; Ying, Leslie ; Xi Peng ; Yanjie Zhu ; Dong Liang</creatorcontrib><description>Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2277798</identifier><identifier>PMID: 23955749</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; alternating direction method of multipliers ; Applied sciences ; Biological and medical sciences ; Compressed sensing ; Computerized, statistical medical data processing and models in biomedicine ; Dictionaries ; dictionary learning ; Exact sciences and technology ; gradient images ; Image processing ; Image reconstruction ; Information, signal and communications theory ; Iterative methods ; Learning ; Medical management aid. Diagnosis aid ; Medical sciences ; Minimization ; Optimization ; Recovery ; Sampling, quantization ; Signal and communications theory ; Signal processing ; sparse representation ; splitting Bregman method ; Telecommunications and information theory ; Television ; total variation ; Trains ; Transforms</subject><ispartof>IEEE transactions on image processing, 2013-12, Vol.22 (12), p.4652-4663</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-a9423229a17e6327249ef173e32b4ba9f685d8713fae94d5b6c7e0640b17468b3</citedby><cites>FETCH-LOGICAL-c410t-a9423229a17e6327249ef173e32b4ba9f685d8713fae94d5b6c7e0640b17468b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6578193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6578193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28088231$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23955749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiegen Liu</creatorcontrib><creatorcontrib>Shanshan Wang</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><creatorcontrib>Xi Peng</creatorcontrib><creatorcontrib>Yanjie Zhu</creatorcontrib><creatorcontrib>Dong Liang</creatorcontrib><title>Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches.</description><subject>Algorithms</subject><subject>alternating direction method of multipliers</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Compressed sensing</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Exact sciences and technology</subject><subject>gradient images</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Information, signal and communications theory</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Recovery</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>sparse representation</subject><subject>splitting Bregman method</subject><subject>Telecommunications and information theory</subject><subject>Television</subject><subject>total variation</subject><subject>Trains</subject><subject>Transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLxDAQB_Agiu-7IEhBBC9dZ5K0SY6Lz4UFxce5pO1UItt2TbqC394suyp48pSQ_GZg5s_YEcIIEczF8-RhxAHFiHOllNEbbBeNxBRA8s14h0ylCqXZYXshvAGgzDDfZjtcmCxT0uyyybi288F9UHLlqsH1nfWfyZSs71z3mrgueZpbHyi59bZ21A3JVd_a-Nz0Ppm09pWSR6r6D_KfB2yrsbNAh-tzn73cXD9f3qXT-9vJ5XiaVhJhSK2RXHBuLCrKBVdcGmpQCRK8lKU1Ta6zWisUjSUj66zMK0WQSyhRyVyXYp-dr_rOff--oDAUrQsVzWa2o34RCpRSx2VoCf-hQgrgoCI9_UPf-oXv4iBRKSHiKsVSwUpVvg_BU1PMvWvjygqEYplIERMplokU60Riycm68aJsqf4p-I4ggrM1sKGys8bbrnLh12nQmguM7njlHBH9fOeZ0miE-AI505jl</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Qiegen Liu</creator><creator>Shanshan Wang</creator><creator>Ying, Leslie</creator><creator>Xi Peng</creator><creator>Yanjie Zhu</creator><creator>Dong Liang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20131201</creationdate><title>Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery</title><author>Qiegen Liu ; Shanshan Wang ; Ying, Leslie ; Xi Peng ; Yanjie Zhu ; Dong Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-a9423229a17e6327249ef173e32b4ba9f685d8713fae94d5b6c7e0640b17468b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>alternating direction method of multipliers</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Compressed sensing</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Exact sciences and technology</topic><topic>gradient images</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Information, signal and communications theory</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Recovery</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>sparse representation</topic><topic>splitting Bregman method</topic><topic>Telecommunications and information theory</topic><topic>Television</topic><topic>total variation</topic><topic>Trains</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiegen Liu</creatorcontrib><creatorcontrib>Shanshan Wang</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><creatorcontrib>Xi Peng</creatorcontrib><creatorcontrib>Yanjie Zhu</creatorcontrib><creatorcontrib>Dong Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiegen Liu</au><au>Shanshan Wang</au><au>Ying, Leslie</au><au>Xi Peng</au><au>Yanjie Zhu</au><au>Dong Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>22</volume><issue>12</issue><spage>4652</spage><epage>4663</epage><pages>4652-4663</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23955749</pmid><doi>10.1109/TIP.2013.2277798</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2013-12, Vol.22 (12), p.4652-4663
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_23955749
source IEEE Electronic Library (IEL)
subjects Algorithms
alternating direction method of multipliers
Applied sciences
Biological and medical sciences
Compressed sensing
Computerized, statistical medical data processing and models in biomedicine
Dictionaries
dictionary learning
Exact sciences and technology
gradient images
Image processing
Image reconstruction
Information, signal and communications theory
Iterative methods
Learning
Medical management aid. Diagnosis aid
Medical sciences
Minimization
Optimization
Recovery
Sampling, quantization
Signal and communications theory
Signal processing
sparse representation
splitting Bregman method
Telecommunications and information theory
Television
total variation
Trains
Transforms
title Adaptive Dictionary Learning in Sparse Gradient Domain for Image Recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dictionary%20Learning%20in%20Sparse%20Gradient%20Domain%20for%20Image%20Recovery&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Qiegen%20Liu&rft.date=2013-12-01&rft.volume=22&rft.issue=12&rft.spage=4652&rft.epage=4663&rft.pages=4652-4663&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2277798&rft_dat=%3Cproquest_RIE%3E1448777840%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473310537&rft_id=info:pmid/23955749&rft_ieee_id=6578193&rfr_iscdi=true