Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications

Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2012-08, Vol.6 (4), p.344-355
Hauptverfasser: Fan Zhang, Holleman, J., Otis, B. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 4
container_start_page 344
container_title IEEE transactions on biomedical circuits and systems
container_volume 6
creator Fan Zhang
Holleman, J.
Otis, B. P.
description Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ V rms , and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ V rms , and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ V rms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.
doi_str_mv 10.1109/TBCAS.2011.2177089
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_23853179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6129415</ieee_id><sourcerecordid>1034810551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e96536520905fec283b518377ddf23de6ce8a6c9e88770efb8d720725f88bcd93</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMofv8BBSl48dJ1kjRtctxdP2FBQQVvpZtOJNLd1KRF_Pemu6sHL54y8D7vwOQh5ITCiFJQl8-T6fhpxIDSEaNFAVJtkX2qMkiVUrA9zJylmcjEHjkI4R1A5EyxXbLHuBScFmqfvF5hsG_LxJnkpel8lc7cZ_LoPtEnE-ta1-Gys1WTjBdtY41FHxLjVtlQGwL90dtgO-uWybiNkK6GORyRHVM1AY837yF5ubl-nt6ls4fb--l4lmousy5FlQueCwYKhEHNJJ8LKnlR1LVhvMZco6xyrVDKeCGauawLBgUTRsq5rhU_JBfrva13Hz2GrlzYoLFpqiW6PpQ0A-BKZUL8jwLPJAUhaETP_6Dvrvfx3hUFPP6fgEixNaW9C8GjKVtvF5X_ilA5KCpXispBUblRFEtnm9X9fIH1b-XHSQRO14BFxN84p0xlVPBv_iyUDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030338550</pqid></control><display><type>article</type><title>Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Fan Zhang ; Holleman, J. ; Otis, B. P.</creator><creatorcontrib>Fan Zhang ; Holleman, J. ; Otis, B. P.</creatorcontrib><description>Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ V rms , and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ V rms , and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ V rms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2011.2177089</identifier><identifier>PMID: 23853179</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amplifiers, Electronic ; Analog integrated circuits ; Bandwidth ; Biomedical Engineering ; biopotential amplifier ; biosignal amplifier ; Brain Diseases - therapy ; Computers ; Electric Power Supplies ; Electronics ; Equipment Design ; Gain ; Humans ; Logic gates ; low noise ; low-power circuit design ; Miniaturization ; neural amplifier ; Neurosciences - instrumentation ; Noise ; noise efficiency factor ; Prostheses and Implants ; Signal Processing, Computer-Assisted ; Thermal noise ; Transconductance ; Transistors ; Wireless Technology</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2012-08, Vol.6 (4), p.344-355</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-e96536520905fec283b518377ddf23de6ce8a6c9e88770efb8d720725f88bcd93</citedby><cites>FETCH-LOGICAL-c384t-e96536520905fec283b518377ddf23de6ce8a6c9e88770efb8d720725f88bcd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6129415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6129415$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23853179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan Zhang</creatorcontrib><creatorcontrib>Holleman, J.</creatorcontrib><creatorcontrib>Otis, B. P.</creatorcontrib><title>Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ V rms , and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ V rms , and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ V rms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.</description><subject>Amplifiers, Electronic</subject><subject>Analog integrated circuits</subject><subject>Bandwidth</subject><subject>Biomedical Engineering</subject><subject>biopotential amplifier</subject><subject>biosignal amplifier</subject><subject>Brain Diseases - therapy</subject><subject>Computers</subject><subject>Electric Power Supplies</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Gain</subject><subject>Humans</subject><subject>Logic gates</subject><subject>low noise</subject><subject>low-power circuit design</subject><subject>Miniaturization</subject><subject>neural amplifier</subject><subject>Neurosciences - instrumentation</subject><subject>Noise</subject><subject>noise efficiency factor</subject><subject>Prostheses and Implants</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Thermal noise</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Wireless Technology</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1LxDAQhoMofv8BBSl48dJ1kjRtctxdP2FBQQVvpZtOJNLd1KRF_Pemu6sHL54y8D7vwOQh5ITCiFJQl8-T6fhpxIDSEaNFAVJtkX2qMkiVUrA9zJylmcjEHjkI4R1A5EyxXbLHuBScFmqfvF5hsG_LxJnkpel8lc7cZ_LoPtEnE-ta1-Gys1WTjBdtY41FHxLjVtlQGwL90dtgO-uWybiNkK6GORyRHVM1AY837yF5ubl-nt6ls4fb--l4lmousy5FlQueCwYKhEHNJJ8LKnlR1LVhvMZco6xyrVDKeCGauawLBgUTRsq5rhU_JBfrva13Hz2GrlzYoLFpqiW6PpQ0A-BKZUL8jwLPJAUhaETP_6Dvrvfx3hUFPP6fgEixNaW9C8GjKVtvF5X_ilA5KCpXispBUblRFEtnm9X9fIH1b-XHSQRO14BFxN84p0xlVPBv_iyUDA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Fan Zhang</creator><creator>Holleman, J.</creator><creator>Otis, B. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications</title><author>Fan Zhang ; Holleman, J. ; Otis, B. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e96536520905fec283b518377ddf23de6ce8a6c9e88770efb8d720725f88bcd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amplifiers, Electronic</topic><topic>Analog integrated circuits</topic><topic>Bandwidth</topic><topic>Biomedical Engineering</topic><topic>biopotential amplifier</topic><topic>biosignal amplifier</topic><topic>Brain Diseases - therapy</topic><topic>Computers</topic><topic>Electric Power Supplies</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Gain</topic><topic>Humans</topic><topic>Logic gates</topic><topic>low noise</topic><topic>low-power circuit design</topic><topic>Miniaturization</topic><topic>neural amplifier</topic><topic>Neurosciences - instrumentation</topic><topic>Noise</topic><topic>noise efficiency factor</topic><topic>Prostheses and Implants</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Thermal noise</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan Zhang</creatorcontrib><creatorcontrib>Holleman, J.</creatorcontrib><creatorcontrib>Otis, B. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan Zhang</au><au>Holleman, J.</au><au>Otis, B. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>6</volume><issue>4</issue><spage>344</spage><epage>355</epage><pages>344-355</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ V rms , and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ V rms , and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ V rms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23853179</pmid><doi>10.1109/TBCAS.2011.2177089</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2012-08, Vol.6 (4), p.344-355
issn 1932-4545
1940-9990
language eng
recordid cdi_pubmed_primary_23853179
source IEEE Electronic Library (IEL)
subjects Amplifiers, Electronic
Analog integrated circuits
Bandwidth
Biomedical Engineering
biopotential amplifier
biosignal amplifier
Brain Diseases - therapy
Computers
Electric Power Supplies
Electronics
Equipment Design
Gain
Humans
Logic gates
low noise
low-power circuit design
Miniaturization
neural amplifier
Neurosciences - instrumentation
Noise
noise efficiency factor
Prostheses and Implants
Signal Processing, Computer-Assisted
Thermal noise
Transconductance
Transistors
Wireless Technology
title Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Ultra-Low%20Power%20Biopotential%20Amplifiers%20for%20Biosignal%20Acquisition%20Applications&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Fan%20Zhang&rft.date=2012-08-01&rft.volume=6&rft.issue=4&rft.spage=344&rft.epage=355&rft.pages=344-355&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2011.2177089&rft_dat=%3Cproquest_RIE%3E1034810551%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030338550&rft_id=info:pmid/23853179&rft_ieee_id=6129415&rfr_iscdi=true