Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications
Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2012-08, Vol.6 (4), p.344-355 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 4 |
container_start_page | 344 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 6 |
creator | Fan Zhang Holleman, J. Otis, B. P. |
description | Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ V rms , and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ V rms , and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ V rms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply. |
doi_str_mv | 10.1109/TBCAS.2011.2177089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_23853179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6129415</ieee_id><sourcerecordid>1034810551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e96536520905fec283b518377ddf23de6ce8a6c9e88770efb8d720725f88bcd93</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMofv8BBSl48dJ1kjRtctxdP2FBQQVvpZtOJNLd1KRF_Pemu6sHL54y8D7vwOQh5ITCiFJQl8-T6fhpxIDSEaNFAVJtkX2qMkiVUrA9zJylmcjEHjkI4R1A5EyxXbLHuBScFmqfvF5hsG_LxJnkpel8lc7cZ_LoPtEnE-ta1-Gys1WTjBdtY41FHxLjVtlQGwL90dtgO-uWybiNkK6GORyRHVM1AY837yF5ubl-nt6ls4fb--l4lmousy5FlQueCwYKhEHNJJ8LKnlR1LVhvMZco6xyrVDKeCGauawLBgUTRsq5rhU_JBfrva13Hz2GrlzYoLFpqiW6PpQ0A-BKZUL8jwLPJAUhaETP_6Dvrvfx3hUFPP6fgEixNaW9C8GjKVtvF5X_ilA5KCpXispBUblRFEtnm9X9fIH1b-XHSQRO14BFxN84p0xlVPBv_iyUDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030338550</pqid></control><display><type>article</type><title>Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Fan Zhang ; Holleman, J. ; Otis, B. P.</creator><creatorcontrib>Fan Zhang ; Holleman, J. ; Otis, B. P.</creatorcontrib><description>Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ V rms , and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ V rms , and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ V rms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2011.2177089</identifier><identifier>PMID: 23853179</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amplifiers, Electronic ; Analog integrated circuits ; Bandwidth ; Biomedical Engineering ; biopotential amplifier ; biosignal amplifier ; Brain Diseases - therapy ; Computers ; Electric Power Supplies ; Electronics ; Equipment Design ; Gain ; Humans ; Logic gates ; low noise ; low-power circuit design ; Miniaturization ; neural amplifier ; Neurosciences - instrumentation ; Noise ; noise efficiency factor ; Prostheses and Implants ; Signal Processing, Computer-Assisted ; Thermal noise ; Transconductance ; Transistors ; Wireless Technology</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2012-08, Vol.6 (4), p.344-355</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-e96536520905fec283b518377ddf23de6ce8a6c9e88770efb8d720725f88bcd93</citedby><cites>FETCH-LOGICAL-c384t-e96536520905fec283b518377ddf23de6ce8a6c9e88770efb8d720725f88bcd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6129415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6129415$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23853179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan Zhang</creatorcontrib><creatorcontrib>Holleman, J.</creatorcontrib><creatorcontrib>Otis, B. P.</creatorcontrib><title>Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ V rms , and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ V rms , and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ V rms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.</description><subject>Amplifiers, Electronic</subject><subject>Analog integrated circuits</subject><subject>Bandwidth</subject><subject>Biomedical Engineering</subject><subject>biopotential amplifier</subject><subject>biosignal amplifier</subject><subject>Brain Diseases - therapy</subject><subject>Computers</subject><subject>Electric Power Supplies</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Gain</subject><subject>Humans</subject><subject>Logic gates</subject><subject>low noise</subject><subject>low-power circuit design</subject><subject>Miniaturization</subject><subject>neural amplifier</subject><subject>Neurosciences - instrumentation</subject><subject>Noise</subject><subject>noise efficiency factor</subject><subject>Prostheses and Implants</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Thermal noise</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Wireless Technology</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1LxDAQhoMofv8BBSl48dJ1kjRtctxdP2FBQQVvpZtOJNLd1KRF_Pemu6sHL54y8D7vwOQh5ITCiFJQl8-T6fhpxIDSEaNFAVJtkX2qMkiVUrA9zJylmcjEHjkI4R1A5EyxXbLHuBScFmqfvF5hsG_LxJnkpel8lc7cZ_LoPtEnE-ta1-Gys1WTjBdtY41FHxLjVtlQGwL90dtgO-uWybiNkK6GORyRHVM1AY837yF5ubl-nt6ls4fb--l4lmousy5FlQueCwYKhEHNJJ8LKnlR1LVhvMZco6xyrVDKeCGauawLBgUTRsq5rhU_JBfrva13Hz2GrlzYoLFpqiW6PpQ0A-BKZUL8jwLPJAUhaETP_6Dvrvfx3hUFPP6fgEixNaW9C8GjKVtvF5X_ilA5KCpXispBUblRFEtnm9X9fIH1b-XHSQRO14BFxN84p0xlVPBv_iyUDA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Fan Zhang</creator><creator>Holleman, J.</creator><creator>Otis, B. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications</title><author>Fan Zhang ; Holleman, J. ; Otis, B. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e96536520905fec283b518377ddf23de6ce8a6c9e88770efb8d720725f88bcd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amplifiers, Electronic</topic><topic>Analog integrated circuits</topic><topic>Bandwidth</topic><topic>Biomedical Engineering</topic><topic>biopotential amplifier</topic><topic>biosignal amplifier</topic><topic>Brain Diseases - therapy</topic><topic>Computers</topic><topic>Electric Power Supplies</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Gain</topic><topic>Humans</topic><topic>Logic gates</topic><topic>low noise</topic><topic>low-power circuit design</topic><topic>Miniaturization</topic><topic>neural amplifier</topic><topic>Neurosciences - instrumentation</topic><topic>Noise</topic><topic>noise efficiency factor</topic><topic>Prostheses and Implants</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Thermal noise</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan Zhang</creatorcontrib><creatorcontrib>Holleman, J.</creatorcontrib><creatorcontrib>Otis, B. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan Zhang</au><au>Holleman, J.</au><au>Otis, B. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>6</volume><issue>4</issue><spage>344</spage><epage>355</epage><pages>344-355</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ V rms , and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ V rms , and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ V rms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23853179</pmid><doi>10.1109/TBCAS.2011.2177089</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2012-08, Vol.6 (4), p.344-355 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_pubmed_primary_23853179 |
source | IEEE Electronic Library (IEL) |
subjects | Amplifiers, Electronic Analog integrated circuits Bandwidth Biomedical Engineering biopotential amplifier biosignal amplifier Brain Diseases - therapy Computers Electric Power Supplies Electronics Equipment Design Gain Humans Logic gates low noise low-power circuit design Miniaturization neural amplifier Neurosciences - instrumentation Noise noise efficiency factor Prostheses and Implants Signal Processing, Computer-Assisted Thermal noise Transconductance Transistors Wireless Technology |
title | Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Ultra-Low%20Power%20Biopotential%20Amplifiers%20for%20Biosignal%20Acquisition%20Applications&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Fan%20Zhang&rft.date=2012-08-01&rft.volume=6&rft.issue=4&rft.spage=344&rft.epage=355&rft.pages=344-355&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2011.2177089&rft_dat=%3Cproquest_RIE%3E1034810551%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030338550&rft_id=info:pmid/23853179&rft_ieee_id=6129415&rfr_iscdi=true |