Regulation of STIM1/Orai1-dependent Ca2+ signalling in platelets

Platelet secretion and aggregation as well as thrombus formation of blood platelets critically depend on increase of cytosolic Ca2+ concentration ([Ca2+]i) mainly resulting from intracellular Ca2+ release followed by store operated Ca2+ entry (SOCE) through Ca2+ release activated channels (CRAC). SO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thrombosis and haemostasis 2013-11, Vol.110 (5), p.925-930
Hauptverfasser: Lang, Florian, Münzer, Patrick, Gawaz, Meinrad, Borst, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Platelet secretion and aggregation as well as thrombus formation of blood platelets critically depend on increase of cytosolic Ca2+ concentration ([Ca2+]i) mainly resulting from intracellular Ca2+ release followed by store operated Ca2+ entry (SOCE) through Ca2+ release activated channels (CRAC). SOCE is in part accomplished by the pore forming unit Orai and its regulator stromal interaction molecule (STIM). Orai1 and STIM1 transcription is stimulated by NF-κB (nuclear factor kappa B). Serum- and glucocorticoid-inducible kinase 1 (SGK1) up-regulates NF-κB-activity in megakaryocytes and thus Orai1-expression and SOCE in platelets. SGK1 is thus a powerful regulator of platelet Ca2+-signalling and thrombus formation and presumably participates in the regulation of platelet activation by a variety of hormones as well as clinical conditions (e.g. type 2 diabetes or metabolic syndrome) associated with platelet hyperaggregability and increased risk of thromboocclusive events. SOCE in platelets is further regulated by scaffolding protein Homer and chaperone protein cyclophilin A (CyPA). Additional potential regulators of Orai1/STIM1 and thus SOCE in platelets include AMP activated kinase (AMPK), protein kinase A (PKA), reactive oxygen species, lipid rafts, pH and mitochondrial Ca2+ buffering. Future studies are required defining the significance of those mechanisms for platelet Orai1 abundance and function, for SOCE into platelets and for platelet function in cardiovascular diseases.
ISSN:0340-6245
2567-689X
DOI:10.1160/TH13-02-0176