Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter

Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (17), p.7068-7073
Hauptverfasser: Rizzello, Antonia, Romano, Alessandro, Kottra, Gabor, Acierno, Raffaele, Storelli, Carlo, Verri, Tiziano, Daniel, Hannelore, Maffia, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7073
container_issue 17
container_start_page 7068
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Rizzello, Antonia
Romano, Alessandro
Kottra, Gabor
Acierno, Raffaele
Storelli, Carlo
Verri, Tiziano
Daniel, Hannelore
Maffia, Michele
description Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications.
doi_str_mv 10.1073/pnas.1220417110
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_23569229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42590564</jstor_id><sourcerecordid>42590564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-dff0d0f74669a939d1c0f659a6c2fc2a5edfea0d6100201d0d3fd2a8881d39cd3</originalsourceid><addsrcrecordid>eNpVkc-LUzEQxx-iuHX17EkNeFkPb3eSvJe8XBak7KqwYMHdcxjzo01pX2qSFhb8401p7SoEcshnPpmZb9O8pXBJQfKrzYj5kjIGHZWUwrNmQkHRVnQKnjcTACbboWPdWfMq5yUAqH6Al80Z471QjKlJ83uWYnFhJCauLEGLm4IlxJHkkrC4-SPZBSRItmP4tXUku50bW1yHMRI0wRIb11ir6ykLR4JxPuQFuZguqiPahCaSBa6xbPMnMruZ3VNSvWPexFRcet288LjK7s3xPm8ebm_up1_bu-9fvk0_37Wm72VprfdgwctOCIWKK0sNeNErFIZ5w7B31jsEK2gdGKgFy71lOAwDtVwZy8-b64N3s_25dta4sTax0psU1pgedcSg_38Zw0LP405zwaVQqgo-HgUp1jXkopdxm8bas6a8E5L2TMlKXR0ok2LOyfnTDxT0Pi69j0s_xVUr3v_b2In_m08FPhyBfeVJt_dJLUEMlXh3IJa5xHRCOtYr6EX3ZPAYNc5TyPrhR92SAKBcDtDxP63EsJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346715297</pqid></control><display><type>article</type><title>Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rizzello, Antonia ; Romano, Alessandro ; Kottra, Gabor ; Acierno, Raffaele ; Storelli, Carlo ; Verri, Tiziano ; Daniel, Hannelore ; Maffia, Michele</creator><creatorcontrib>Rizzello, Antonia ; Romano, Alessandro ; Kottra, Gabor ; Acierno, Raffaele ; Storelli, Carlo ; Verri, Tiziano ; Daniel, Hannelore ; Maffia, Michele</creatorcontrib><description>Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1220417110</identifier><identifier>PMID: 23569229</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptation, Biological - physiology ; Amino Acid Sequence ; Amino acids ; Animal behavior ; Animals ; Base Sequence ; Biological Sciences ; Cloning, Molecular ; Cluster Analysis ; Cold ; Cold regions ; Cold Temperature ; Enzymes ; Exons ; Fish ; Low temperature ; Membrane transport proteins ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oocytes ; Patch-Clamp Techniques ; Peptide Transporter 1 ; Perciformes - physiology ; Phylogeny ; Protein Structure, Tertiary - genetics ; Protein Structure, Tertiary - physiology ; Proteins ; Rabbits ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Symporters - genetics ; Symporters - physiology ; Temperature dependence ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.7068-7073</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 23, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-dff0d0f74669a939d1c0f659a6c2fc2a5edfea0d6100201d0d3fd2a8881d39cd3</citedby><cites>FETCH-LOGICAL-c557t-dff0d0f74669a939d1c0f659a6c2fc2a5edfea0d6100201d0d3fd2a8881d39cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42590564$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42590564$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23569229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizzello, Antonia</creatorcontrib><creatorcontrib>Romano, Alessandro</creatorcontrib><creatorcontrib>Kottra, Gabor</creatorcontrib><creatorcontrib>Acierno, Raffaele</creatorcontrib><creatorcontrib>Storelli, Carlo</creatorcontrib><creatorcontrib>Verri, Tiziano</creatorcontrib><creatorcontrib>Daniel, Hannelore</creatorcontrib><creatorcontrib>Maffia, Michele</creatorcontrib><title>Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications.</description><subject>Adaptation, Biological - physiology</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Cloning, Molecular</subject><subject>Cluster Analysis</subject><subject>Cold</subject><subject>Cold regions</subject><subject>Cold Temperature</subject><subject>Enzymes</subject><subject>Exons</subject><subject>Fish</subject><subject>Low temperature</subject><subject>Membrane transport proteins</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oocytes</subject><subject>Patch-Clamp Techniques</subject><subject>Peptide Transporter 1</subject><subject>Perciformes - physiology</subject><subject>Phylogeny</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Proteins</subject><subject>Rabbits</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sequence Analysis, DNA</subject><subject>Symporters - genetics</subject><subject>Symporters - physiology</subject><subject>Temperature dependence</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc-LUzEQxx-iuHX17EkNeFkPb3eSvJe8XBak7KqwYMHdcxjzo01pX2qSFhb8401p7SoEcshnPpmZb9O8pXBJQfKrzYj5kjIGHZWUwrNmQkHRVnQKnjcTACbboWPdWfMq5yUAqH6Al80Z471QjKlJ83uWYnFhJCauLEGLm4IlxJHkkrC4-SPZBSRItmP4tXUku50bW1yHMRI0wRIb11ir6ykLR4JxPuQFuZguqiPahCaSBa6xbPMnMruZ3VNSvWPexFRcet288LjK7s3xPm8ebm_up1_bu-9fvk0_37Wm72VprfdgwctOCIWKK0sNeNErFIZ5w7B31jsEK2gdGKgFy71lOAwDtVwZy8-b64N3s_25dta4sTax0psU1pgedcSg_38Zw0LP405zwaVQqgo-HgUp1jXkopdxm8bas6a8E5L2TMlKXR0ok2LOyfnTDxT0Pi69j0s_xVUr3v_b2In_m08FPhyBfeVJt_dJLUEMlXh3IJa5xHRCOtYr6EX3ZPAYNc5TyPrhR92SAKBcDtDxP63EsJ4</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Rizzello, Antonia</creator><creator>Romano, Alessandro</creator><creator>Kottra, Gabor</creator><creator>Acierno, Raffaele</creator><creator>Storelli, Carlo</creator><creator>Verri, Tiziano</creator><creator>Daniel, Hannelore</creator><creator>Maffia, Michele</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130423</creationdate><title>Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter</title><author>Rizzello, Antonia ; Romano, Alessandro ; Kottra, Gabor ; Acierno, Raffaele ; Storelli, Carlo ; Verri, Tiziano ; Daniel, Hannelore ; Maffia, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-dff0d0f74669a939d1c0f659a6c2fc2a5edfea0d6100201d0d3fd2a8881d39cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Biological - physiology</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Cloning, Molecular</topic><topic>Cluster Analysis</topic><topic>Cold</topic><topic>Cold regions</topic><topic>Cold Temperature</topic><topic>Enzymes</topic><topic>Exons</topic><topic>Fish</topic><topic>Low temperature</topic><topic>Membrane transport proteins</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oocytes</topic><topic>Patch-Clamp Techniques</topic><topic>Peptide Transporter 1</topic><topic>Perciformes - physiology</topic><topic>Phylogeny</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Proteins</topic><topic>Rabbits</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sequence Analysis, DNA</topic><topic>Symporters - genetics</topic><topic>Symporters - physiology</topic><topic>Temperature dependence</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizzello, Antonia</creatorcontrib><creatorcontrib>Romano, Alessandro</creatorcontrib><creatorcontrib>Kottra, Gabor</creatorcontrib><creatorcontrib>Acierno, Raffaele</creatorcontrib><creatorcontrib>Storelli, Carlo</creatorcontrib><creatorcontrib>Verri, Tiziano</creatorcontrib><creatorcontrib>Daniel, Hannelore</creatorcontrib><creatorcontrib>Maffia, Michele</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizzello, Antonia</au><au>Romano, Alessandro</au><au>Kottra, Gabor</au><au>Acierno, Raffaele</au><au>Storelli, Carlo</au><au>Verri, Tiziano</au><au>Daniel, Hannelore</au><au>Maffia, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>110</volume><issue>17</issue><spage>7068</spage><epage>7073</epage><pages>7068-7073</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23569229</pmid><doi>10.1073/pnas.1220417110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.7068-7073
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_23569229
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptation, Biological - physiology
Amino Acid Sequence
Amino acids
Animal behavior
Animals
Base Sequence
Biological Sciences
Cloning, Molecular
Cluster Analysis
Cold
Cold regions
Cold Temperature
Enzymes
Exons
Fish
Low temperature
Membrane transport proteins
Models, Molecular
Molecular Sequence Data
Mutagenesis, Site-Directed
Oocytes
Patch-Clamp Techniques
Peptide Transporter 1
Perciformes - physiology
Phylogeny
Protein Structure, Tertiary - genetics
Protein Structure, Tertiary - physiology
Proteins
Rabbits
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
Sequence Analysis, DNA
Symporters - genetics
Symporters - physiology
Temperature dependence
Vertebrates
title Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20cold%20adaptation%20strategy%20via%20a%20unique%20seven-amino%20acid%20domain%20in%20the%20icefish%20(Chionodraco%20hamatus)%20PEPT1%20transporter&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rizzello,%20Antonia&rft.date=2013-04-23&rft.volume=110&rft.issue=17&rft.spage=7068&rft.epage=7073&rft.pages=7068-7073&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1220417110&rft_dat=%3Cjstor_pubme%3E42590564%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346715297&rft_id=info:pmid/23569229&rft_jstor_id=42590564&rfr_iscdi=true