Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter
Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (17), p.7068-7073 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7073 |
---|---|
container_issue | 17 |
container_start_page | 7068 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Rizzello, Antonia Romano, Alessandro Kottra, Gabor Acierno, Raffaele Storelli, Carlo Verri, Tiziano Daniel, Hannelore Maffia, Michele |
description | Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. |
doi_str_mv | 10.1073/pnas.1220417110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_23569229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42590564</jstor_id><sourcerecordid>42590564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-dff0d0f74669a939d1c0f659a6c2fc2a5edfea0d6100201d0d3fd2a8881d39cd3</originalsourceid><addsrcrecordid>eNpVkc-LUzEQxx-iuHX17EkNeFkPb3eSvJe8XBak7KqwYMHdcxjzo01pX2qSFhb8401p7SoEcshnPpmZb9O8pXBJQfKrzYj5kjIGHZWUwrNmQkHRVnQKnjcTACbboWPdWfMq5yUAqH6Al80Z471QjKlJ83uWYnFhJCauLEGLm4IlxJHkkrC4-SPZBSRItmP4tXUku50bW1yHMRI0wRIb11ir6ykLR4JxPuQFuZguqiPahCaSBa6xbPMnMruZ3VNSvWPexFRcet288LjK7s3xPm8ebm_up1_bu-9fvk0_37Wm72VprfdgwctOCIWKK0sNeNErFIZ5w7B31jsEK2gdGKgFy71lOAwDtVwZy8-b64N3s_25dta4sTax0psU1pgedcSg_38Zw0LP405zwaVQqgo-HgUp1jXkopdxm8bas6a8E5L2TMlKXR0ok2LOyfnTDxT0Pi69j0s_xVUr3v_b2In_m08FPhyBfeVJt_dJLUEMlXh3IJa5xHRCOtYr6EX3ZPAYNc5TyPrhR92SAKBcDtDxP63EsJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346715297</pqid></control><display><type>article</type><title>Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rizzello, Antonia ; Romano, Alessandro ; Kottra, Gabor ; Acierno, Raffaele ; Storelli, Carlo ; Verri, Tiziano ; Daniel, Hannelore ; Maffia, Michele</creator><creatorcontrib>Rizzello, Antonia ; Romano, Alessandro ; Kottra, Gabor ; Acierno, Raffaele ; Storelli, Carlo ; Verri, Tiziano ; Daniel, Hannelore ; Maffia, Michele</creatorcontrib><description>Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1220417110</identifier><identifier>PMID: 23569229</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptation, Biological - physiology ; Amino Acid Sequence ; Amino acids ; Animal behavior ; Animals ; Base Sequence ; Biological Sciences ; Cloning, Molecular ; Cluster Analysis ; Cold ; Cold regions ; Cold Temperature ; Enzymes ; Exons ; Fish ; Low temperature ; Membrane transport proteins ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oocytes ; Patch-Clamp Techniques ; Peptide Transporter 1 ; Perciformes - physiology ; Phylogeny ; Protein Structure, Tertiary - genetics ; Protein Structure, Tertiary - physiology ; Proteins ; Rabbits ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Symporters - genetics ; Symporters - physiology ; Temperature dependence ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.7068-7073</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 23, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-dff0d0f74669a939d1c0f659a6c2fc2a5edfea0d6100201d0d3fd2a8881d39cd3</citedby><cites>FETCH-LOGICAL-c557t-dff0d0f74669a939d1c0f659a6c2fc2a5edfea0d6100201d0d3fd2a8881d39cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42590564$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42590564$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23569229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizzello, Antonia</creatorcontrib><creatorcontrib>Romano, Alessandro</creatorcontrib><creatorcontrib>Kottra, Gabor</creatorcontrib><creatorcontrib>Acierno, Raffaele</creatorcontrib><creatorcontrib>Storelli, Carlo</creatorcontrib><creatorcontrib>Verri, Tiziano</creatorcontrib><creatorcontrib>Daniel, Hannelore</creatorcontrib><creatorcontrib>Maffia, Michele</creatorcontrib><title>Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications.</description><subject>Adaptation, Biological - physiology</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Cloning, Molecular</subject><subject>Cluster Analysis</subject><subject>Cold</subject><subject>Cold regions</subject><subject>Cold Temperature</subject><subject>Enzymes</subject><subject>Exons</subject><subject>Fish</subject><subject>Low temperature</subject><subject>Membrane transport proteins</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oocytes</subject><subject>Patch-Clamp Techniques</subject><subject>Peptide Transporter 1</subject><subject>Perciformes - physiology</subject><subject>Phylogeny</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Proteins</subject><subject>Rabbits</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sequence Analysis, DNA</subject><subject>Symporters - genetics</subject><subject>Symporters - physiology</subject><subject>Temperature dependence</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc-LUzEQxx-iuHX17EkNeFkPb3eSvJe8XBak7KqwYMHdcxjzo01pX2qSFhb8401p7SoEcshnPpmZb9O8pXBJQfKrzYj5kjIGHZWUwrNmQkHRVnQKnjcTACbboWPdWfMq5yUAqH6Al80Z471QjKlJ83uWYnFhJCauLEGLm4IlxJHkkrC4-SPZBSRItmP4tXUku50bW1yHMRI0wRIb11ir6ykLR4JxPuQFuZguqiPahCaSBa6xbPMnMruZ3VNSvWPexFRcet288LjK7s3xPm8ebm_up1_bu-9fvk0_37Wm72VprfdgwctOCIWKK0sNeNErFIZ5w7B31jsEK2gdGKgFy71lOAwDtVwZy8-b64N3s_25dta4sTax0psU1pgedcSg_38Zw0LP405zwaVQqgo-HgUp1jXkopdxm8bas6a8E5L2TMlKXR0ok2LOyfnTDxT0Pi69j0s_xVUr3v_b2In_m08FPhyBfeVJt_dJLUEMlXh3IJa5xHRCOtYr6EX3ZPAYNc5TyPrhR92SAKBcDtDxP63EsJ4</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Rizzello, Antonia</creator><creator>Romano, Alessandro</creator><creator>Kottra, Gabor</creator><creator>Acierno, Raffaele</creator><creator>Storelli, Carlo</creator><creator>Verri, Tiziano</creator><creator>Daniel, Hannelore</creator><creator>Maffia, Michele</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130423</creationdate><title>Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter</title><author>Rizzello, Antonia ; Romano, Alessandro ; Kottra, Gabor ; Acierno, Raffaele ; Storelli, Carlo ; Verri, Tiziano ; Daniel, Hannelore ; Maffia, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-dff0d0f74669a939d1c0f659a6c2fc2a5edfea0d6100201d0d3fd2a8881d39cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Biological - physiology</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Cloning, Molecular</topic><topic>Cluster Analysis</topic><topic>Cold</topic><topic>Cold regions</topic><topic>Cold Temperature</topic><topic>Enzymes</topic><topic>Exons</topic><topic>Fish</topic><topic>Low temperature</topic><topic>Membrane transport proteins</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oocytes</topic><topic>Patch-Clamp Techniques</topic><topic>Peptide Transporter 1</topic><topic>Perciformes - physiology</topic><topic>Phylogeny</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Proteins</topic><topic>Rabbits</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sequence Analysis, DNA</topic><topic>Symporters - genetics</topic><topic>Symporters - physiology</topic><topic>Temperature dependence</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizzello, Antonia</creatorcontrib><creatorcontrib>Romano, Alessandro</creatorcontrib><creatorcontrib>Kottra, Gabor</creatorcontrib><creatorcontrib>Acierno, Raffaele</creatorcontrib><creatorcontrib>Storelli, Carlo</creatorcontrib><creatorcontrib>Verri, Tiziano</creatorcontrib><creatorcontrib>Daniel, Hannelore</creatorcontrib><creatorcontrib>Maffia, Michele</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizzello, Antonia</au><au>Romano, Alessandro</au><au>Kottra, Gabor</au><au>Acierno, Raffaele</au><au>Storelli, Carlo</au><au>Verri, Tiziano</au><au>Daniel, Hannelore</au><au>Maffia, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>110</volume><issue>17</issue><spage>7068</spage><epage>7073</epage><pages>7068-7073</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23569229</pmid><doi>10.1073/pnas.1220417110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.7068-7073 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_23569229 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptation, Biological - physiology Amino Acid Sequence Amino acids Animal behavior Animals Base Sequence Biological Sciences Cloning, Molecular Cluster Analysis Cold Cold regions Cold Temperature Enzymes Exons Fish Low temperature Membrane transport proteins Models, Molecular Molecular Sequence Data Mutagenesis, Site-Directed Oocytes Patch-Clamp Techniques Peptide Transporter 1 Perciformes - physiology Phylogeny Protein Structure, Tertiary - genetics Protein Structure, Tertiary - physiology Proteins Rabbits Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction Sequence Analysis, DNA Symporters - genetics Symporters - physiology Temperature dependence Vertebrates |
title | Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20cold%20adaptation%20strategy%20via%20a%20unique%20seven-amino%20acid%20domain%20in%20the%20icefish%20(Chionodraco%20hamatus)%20PEPT1%20transporter&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rizzello,%20Antonia&rft.date=2013-04-23&rft.volume=110&rft.issue=17&rft.spage=7068&rft.epage=7073&rft.pages=7068-7073&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1220417110&rft_dat=%3Cjstor_pubme%3E42590564%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346715297&rft_id=info:pmid/23569229&rft_jstor_id=42590564&rfr_iscdi=true |