Nanosecond pulsed electric field thresholds for nanopore formation in neural cells

The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca2+), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2013-03, Vol.18 (3), p.035005-035005
Hauptverfasser: Roth, Caleb C, Tolstykh, Gleb P, Payne, Jason A, Kuipers, Marjorie A, Thompson, Gary L, DeSilva, Mauris N, Ibey, Bennett L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 035005
container_issue 3
container_start_page 035005
container_title Journal of biomedical optics
container_volume 18
creator Roth, Caleb C
Tolstykh, Gleb P
Payne, Jason A
Kuipers, Marjorie A
Thompson, Gary L
DeSilva, Mauris N
Ibey, Bennett L
description The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca2+), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excitability of neurons leads to Ca2+ overload and neurodegeneration. Thus, to prevent unintended consequences of nsPEF-induced neural stimulation, knowledge of optimum exposure parameters is required. We determined the relationship between nsPEF exposure parameters (pulse width and amplitude) and nanopore formation in two cell types: rodent neuroblastoma (NG108) and mouse primary hippocampal neurons (PHN). We identified thresholds for nanoporation using Annexin V and FM1-43, to detect changes in membrane asymmetry, and through Ca2+ influx using Calcium Green. The ED50 for a single 600 ns pulse, necessary to cause uptake of extracellular Ca2+, was 1.76  kV/cm for NG108 and 0.84  kV/cm for PHN. At 16.2  kV/cm, the ED50 for pulse width was 95 ns for both cell lines. Cadmium, a nonspecific Ca2+ channel blocker, failed to prevent Ca2+ uptake suggesting that observed influx is likely due to nanoporation. These data demonstrate that moderate amplitude single nsPEF exposures result in rapid Ca2+ influx that may be capable of controllably modulating neurological function.
doi_str_mv 10.1117/1.JBO.18.3.035005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_23532338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1321335036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-7b919043247c4da420bfa74a8d495384b368bded99063f92f3ae8dc0a49726a33</originalsourceid><addsrcrecordid>eNqdkEuP1SAYQInROA_9AW4MSzetwNdSuhxH76iZOMboxg2h8JHLpLdUaE3018v1jmNixpi44pHDAQ4hTzirOefdc16_fXFVc1VDzaBlrL1HjnkrWSWE4vfLnCmoQEp1RE5yvmaMKdnLh-RIQAsCQB2TD-_MFDPaODk6r2NGR3FEu6RgqQ84OrpsE-ZtHF2mPiY6FX6OCfeLnVlCnGiY6IRrMiO1OI75EXngTTE9vhlPyafNq4_nr6vLq4s352eXlZVCLVU39LxnDYims40zjWCDN11jlGv6FlQzgFSDQ9f3TILvhQeDyllmmr4T0gCckmcH75zilxXzonch719gJoxr1lx2vC01ePNvFASHUhBkQfkBtSnmnNDrOYWdSd80Z3pfXXNdqmuuNOhD9XLm6Y1-HXbobk_8ylyAzwcgzwH1dVzTVMpok-w2fMVb3fcw_3b7UJifW2dpCXbE9y83f96sZ-eLfHOX_H9E9V2iv__7Bw13wk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321335036</pqid></control><display><type>article</type><title>Nanosecond pulsed electric field thresholds for nanopore formation in neural cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Roth, Caleb C ; Tolstykh, Gleb P ; Payne, Jason A ; Kuipers, Marjorie A ; Thompson, Gary L ; DeSilva, Mauris N ; Ibey, Bennett L</creator><creatorcontrib>Roth, Caleb C ; Tolstykh, Gleb P ; Payne, Jason A ; Kuipers, Marjorie A ; Thompson, Gary L ; DeSilva, Mauris N ; Ibey, Bennett L</creatorcontrib><description>The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca2+), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excitability of neurons leads to Ca2+ overload and neurodegeneration. Thus, to prevent unintended consequences of nsPEF-induced neural stimulation, knowledge of optimum exposure parameters is required. We determined the relationship between nsPEF exposure parameters (pulse width and amplitude) and nanopore formation in two cell types: rodent neuroblastoma (NG108) and mouse primary hippocampal neurons (PHN). We identified thresholds for nanoporation using Annexin V and FM1-43, to detect changes in membrane asymmetry, and through Ca2+ influx using Calcium Green. The ED50 for a single 600 ns pulse, necessary to cause uptake of extracellular Ca2+, was 1.76  kV/cm for NG108 and 0.84  kV/cm for PHN. At 16.2  kV/cm, the ED50 for pulse width was 95 ns for both cell lines. Cadmium, a nonspecific Ca2+ channel blocker, failed to prevent Ca2+ uptake suggesting that observed influx is likely due to nanoporation. These data demonstrate that moderate amplitude single nsPEF exposures result in rapid Ca2+ influx that may be capable of controllably modulating neurological function.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.18.3.035005</identifier><identifier>PMID: 23532338</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Amplitudes ; Animals ; Annexin A5 - chemistry ; Calcium ; Calcium - metabolism ; Cell Line, Tumor ; Cells, Cultured ; Electric fields ; Electric Stimulation ; Electricity ; Electrochemical Techniques ; Fluorescent Dyes - chemistry ; Hippocampus - cytology ; Models, Neurological ; Nanopores ; Nanostructure ; Nanotechnology ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Neurons - physiology ; Organic Chemicals - chemistry ; Pulse width ; Rats ; Thresholds ; Uptakes</subject><ispartof>Journal of biomedical optics, 2013-03, Vol.18 (3), p.035005-035005</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-7b919043247c4da420bfa74a8d495384b368bded99063f92f3ae8dc0a49726a33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23532338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roth, Caleb C</creatorcontrib><creatorcontrib>Tolstykh, Gleb P</creatorcontrib><creatorcontrib>Payne, Jason A</creatorcontrib><creatorcontrib>Kuipers, Marjorie A</creatorcontrib><creatorcontrib>Thompson, Gary L</creatorcontrib><creatorcontrib>DeSilva, Mauris N</creatorcontrib><creatorcontrib>Ibey, Bennett L</creatorcontrib><title>Nanosecond pulsed electric field thresholds for nanopore formation in neural cells</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca2+), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excitability of neurons leads to Ca2+ overload and neurodegeneration. Thus, to prevent unintended consequences of nsPEF-induced neural stimulation, knowledge of optimum exposure parameters is required. We determined the relationship between nsPEF exposure parameters (pulse width and amplitude) and nanopore formation in two cell types: rodent neuroblastoma (NG108) and mouse primary hippocampal neurons (PHN). We identified thresholds for nanoporation using Annexin V and FM1-43, to detect changes in membrane asymmetry, and through Ca2+ influx using Calcium Green. The ED50 for a single 600 ns pulse, necessary to cause uptake of extracellular Ca2+, was 1.76  kV/cm for NG108 and 0.84  kV/cm for PHN. At 16.2  kV/cm, the ED50 for pulse width was 95 ns for both cell lines. Cadmium, a nonspecific Ca2+ channel blocker, failed to prevent Ca2+ uptake suggesting that observed influx is likely due to nanoporation. These data demonstrate that moderate amplitude single nsPEF exposures result in rapid Ca2+ influx that may be capable of controllably modulating neurological function.</description><subject>Amplitudes</subject><subject>Animals</subject><subject>Annexin A5 - chemistry</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cells, Cultured</subject><subject>Electric fields</subject><subject>Electric Stimulation</subject><subject>Electricity</subject><subject>Electrochemical Techniques</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Hippocampus - cytology</subject><subject>Models, Neurological</subject><subject>Nanopores</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Organic Chemicals - chemistry</subject><subject>Pulse width</subject><subject>Rats</subject><subject>Thresholds</subject><subject>Uptakes</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqdkEuP1SAYQInROA_9AW4MSzetwNdSuhxH76iZOMboxg2h8JHLpLdUaE3018v1jmNixpi44pHDAQ4hTzirOefdc16_fXFVc1VDzaBlrL1HjnkrWSWE4vfLnCmoQEp1RE5yvmaMKdnLh-RIQAsCQB2TD-_MFDPaODk6r2NGR3FEu6RgqQ84OrpsE-ZtHF2mPiY6FX6OCfeLnVlCnGiY6IRrMiO1OI75EXngTTE9vhlPyafNq4_nr6vLq4s352eXlZVCLVU39LxnDYims40zjWCDN11jlGv6FlQzgFSDQ9f3TILvhQeDyllmmr4T0gCckmcH75zilxXzonch719gJoxr1lx2vC01ePNvFASHUhBkQfkBtSnmnNDrOYWdSd80Z3pfXXNdqmuuNOhD9XLm6Y1-HXbobk_8ylyAzwcgzwH1dVzTVMpok-w2fMVb3fcw_3b7UJifW2dpCXbE9y83f96sZ-eLfHOX_H9E9V2iv__7Bw13wk0</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Roth, Caleb C</creator><creator>Tolstykh, Gleb P</creator><creator>Payne, Jason A</creator><creator>Kuipers, Marjorie A</creator><creator>Thompson, Gary L</creator><creator>DeSilva, Mauris N</creator><creator>Ibey, Bennett L</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Nanosecond pulsed electric field thresholds for nanopore formation in neural cells</title><author>Roth, Caleb C ; Tolstykh, Gleb P ; Payne, Jason A ; Kuipers, Marjorie A ; Thompson, Gary L ; DeSilva, Mauris N ; Ibey, Bennett L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-7b919043247c4da420bfa74a8d495384b368bded99063f92f3ae8dc0a49726a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amplitudes</topic><topic>Animals</topic><topic>Annexin A5 - chemistry</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cells, Cultured</topic><topic>Electric fields</topic><topic>Electric Stimulation</topic><topic>Electricity</topic><topic>Electrochemical Techniques</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Hippocampus - cytology</topic><topic>Models, Neurological</topic><topic>Nanopores</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Organic Chemicals - chemistry</topic><topic>Pulse width</topic><topic>Rats</topic><topic>Thresholds</topic><topic>Uptakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roth, Caleb C</creatorcontrib><creatorcontrib>Tolstykh, Gleb P</creatorcontrib><creatorcontrib>Payne, Jason A</creatorcontrib><creatorcontrib>Kuipers, Marjorie A</creatorcontrib><creatorcontrib>Thompson, Gary L</creatorcontrib><creatorcontrib>DeSilva, Mauris N</creatorcontrib><creatorcontrib>Ibey, Bennett L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roth, Caleb C</au><au>Tolstykh, Gleb P</au><au>Payne, Jason A</au><au>Kuipers, Marjorie A</au><au>Thompson, Gary L</au><au>DeSilva, Mauris N</au><au>Ibey, Bennett L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanosecond pulsed electric field thresholds for nanopore formation in neural cells</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>18</volume><issue>3</issue><spage>035005</spage><epage>035005</epage><pages>035005-035005</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca2+), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excitability of neurons leads to Ca2+ overload and neurodegeneration. Thus, to prevent unintended consequences of nsPEF-induced neural stimulation, knowledge of optimum exposure parameters is required. We determined the relationship between nsPEF exposure parameters (pulse width and amplitude) and nanopore formation in two cell types: rodent neuroblastoma (NG108) and mouse primary hippocampal neurons (PHN). We identified thresholds for nanoporation using Annexin V and FM1-43, to detect changes in membrane asymmetry, and through Ca2+ influx using Calcium Green. The ED50 for a single 600 ns pulse, necessary to cause uptake of extracellular Ca2+, was 1.76  kV/cm for NG108 and 0.84  kV/cm for PHN. At 16.2  kV/cm, the ED50 for pulse width was 95 ns for both cell lines. Cadmium, a nonspecific Ca2+ channel blocker, failed to prevent Ca2+ uptake suggesting that observed influx is likely due to nanoporation. These data demonstrate that moderate amplitude single nsPEF exposures result in rapid Ca2+ influx that may be capable of controllably modulating neurological function.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>23532338</pmid><doi>10.1117/1.JBO.18.3.035005</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2013-03, Vol.18 (3), p.035005-035005
issn 1083-3668
1560-2281
language eng
recordid cdi_pubmed_primary_23532338
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amplitudes
Animals
Annexin A5 - chemistry
Calcium
Calcium - metabolism
Cell Line, Tumor
Cells, Cultured
Electric fields
Electric Stimulation
Electricity
Electrochemical Techniques
Fluorescent Dyes - chemistry
Hippocampus - cytology
Models, Neurological
Nanopores
Nanostructure
Nanotechnology
Neurons
Neurons - cytology
Neurons - metabolism
Neurons - physiology
Organic Chemicals - chemistry
Pulse width
Rats
Thresholds
Uptakes
title Nanosecond pulsed electric field thresholds for nanopore formation in neural cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanosecond%20pulsed%20electric%20field%20thresholds%20for%20nanopore%20formation%20in%20neural%20cells&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Roth,%20Caleb%20C&rft.date=2013-03-01&rft.volume=18&rft.issue=3&rft.spage=035005&rft.epage=035005&rft.pages=035005-035005&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.18.3.035005&rft_dat=%3Cproquest_pubme%3E1321335036%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321335036&rft_id=info:pmid/23532338&rfr_iscdi=true