Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits

Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-03, Vol.110 (11), p.4386
Hauptverfasser: Miceli, Francesco, Soldovieri, Maria Virginia, Ambrosino, Paolo, Barrese, Vincenzo, Migliore, Michele, Cilio, Maria Roberta, Taglialatela, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 4386
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Miceli, Francesco
Soldovieri, Maria Virginia
Ambrosino, Paolo
Barrese, Vincenzo
Migliore, Michele
Cilio, Maria Roberta
Taglialatela, Maurizio
description Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.
doi_str_mv 10.1073/pnas.1216867110
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_23440208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23440208</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-8f3a41cc65c0496e0bb7d06ee1c1da846118a3ab473422da18d53cea1bf2d8b43</originalsourceid><addsrcrecordid>eNpFkLFOwzAURS0kREthZkMeYUjxi93EGVEFBVGJBebq2XmhRoltxU6l_gDfzQCI6Z7h6AyXsSsQSxC1vIse0xJKqHRVA4gTNgfRQFGpRszYeUqfQohmpcUZm5VSKVEKPWdfG_IhHyMVcf9L3IZxpB6zCz5x57mn4DFjzym6nmJylLjFKVHLzZEPU_5X8574IfQZP4gn8imMPHT85eZwWy9LHkPGlNw0cLtH76nnaTKTdzldsNMO-0SXv7tg748Pb-unYvu6eV7fb4sICnKhO4kKrK1WVqimImFM3YqKCCy0qFUFoFGiUbVUZdki6HYlLSGYrmy1UXLBrn-6cTIDtbs4ugHH4-7vEPkN_GZkmw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Miceli, Francesco ; Soldovieri, Maria Virginia ; Ambrosino, Paolo ; Barrese, Vincenzo ; Migliore, Michele ; Cilio, Maria Roberta ; Taglialatela, Maurizio</creator><creatorcontrib>Miceli, Francesco ; Soldovieri, Maria Virginia ; Ambrosino, Paolo ; Barrese, Vincenzo ; Migliore, Michele ; Cilio, Maria Roberta ; Taglialatela, Maurizio</creatorcontrib><description>Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.</description><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216867110</identifier><identifier>PMID: 23440208</identifier><language>eng</language><publisher>United States</publisher><subject>Amino Acid Substitution ; Animals ; Anticonvulsants - pharmacology ; Carbamates - pharmacology ; CHO Cells ; Cricetinae ; Cricetulus ; Epilepsy, Benign Neonatal - genetics ; Epilepsy, Benign Neonatal - metabolism ; Epilepsy, Benign Neonatal - pathology ; Genotype ; Humans ; KCNQ2 Potassium Channel - chemistry ; KCNQ2 Potassium Channel - genetics ; KCNQ2 Potassium Channel - metabolism ; KCNQ3 Potassium Channel - genetics ; KCNQ3 Potassium Channel - metabolism ; Models, Molecular ; Mutation, Missense ; Phenotype ; Phenylenediamines - pharmacology ; Pyramidal Cells - metabolism ; Pyramidal Cells - pathology ; Structural Homology, Protein</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (11), p.4386</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23440208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miceli, Francesco</creatorcontrib><creatorcontrib>Soldovieri, Maria Virginia</creatorcontrib><creatorcontrib>Ambrosino, Paolo</creatorcontrib><creatorcontrib>Barrese, Vincenzo</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><creatorcontrib>Cilio, Maria Roberta</creatorcontrib><creatorcontrib>Taglialatela, Maurizio</creatorcontrib><title>Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.</description><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Anticonvulsants - pharmacology</subject><subject>Carbamates - pharmacology</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Epilepsy, Benign Neonatal - genetics</subject><subject>Epilepsy, Benign Neonatal - metabolism</subject><subject>Epilepsy, Benign Neonatal - pathology</subject><subject>Genotype</subject><subject>Humans</subject><subject>KCNQ2 Potassium Channel - chemistry</subject><subject>KCNQ2 Potassium Channel - genetics</subject><subject>KCNQ2 Potassium Channel - metabolism</subject><subject>KCNQ3 Potassium Channel - genetics</subject><subject>KCNQ3 Potassium Channel - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation, Missense</subject><subject>Phenotype</subject><subject>Phenylenediamines - pharmacology</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - pathology</subject><subject>Structural Homology, Protein</subject><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkLFOwzAURS0kREthZkMeYUjxi93EGVEFBVGJBebq2XmhRoltxU6l_gDfzQCI6Z7h6AyXsSsQSxC1vIse0xJKqHRVA4gTNgfRQFGpRszYeUqfQohmpcUZm5VSKVEKPWdfG_IhHyMVcf9L3IZxpB6zCz5x57mn4DFjzym6nmJylLjFKVHLzZEPU_5X8574IfQZP4gn8imMPHT85eZwWy9LHkPGlNw0cLtH76nnaTKTdzldsNMO-0SXv7tg748Pb-unYvu6eV7fb4sICnKhO4kKrK1WVqimImFM3YqKCCy0qFUFoFGiUbVUZdki6HYlLSGYrmy1UXLBrn-6cTIDtbs4ugHH4-7vEPkN_GZkmw</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Miceli, Francesco</creator><creator>Soldovieri, Maria Virginia</creator><creator>Ambrosino, Paolo</creator><creator>Barrese, Vincenzo</creator><creator>Migliore, Michele</creator><creator>Cilio, Maria Roberta</creator><creator>Taglialatela, Maurizio</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20130312</creationdate><title>Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits</title><author>Miceli, Francesco ; Soldovieri, Maria Virginia ; Ambrosino, Paolo ; Barrese, Vincenzo ; Migliore, Michele ; Cilio, Maria Roberta ; Taglialatela, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-8f3a41cc65c0496e0bb7d06ee1c1da846118a3ab473422da18d53cea1bf2d8b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Anticonvulsants - pharmacology</topic><topic>Carbamates - pharmacology</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Epilepsy, Benign Neonatal - genetics</topic><topic>Epilepsy, Benign Neonatal - metabolism</topic><topic>Epilepsy, Benign Neonatal - pathology</topic><topic>Genotype</topic><topic>Humans</topic><topic>KCNQ2 Potassium Channel - chemistry</topic><topic>KCNQ2 Potassium Channel - genetics</topic><topic>KCNQ2 Potassium Channel - metabolism</topic><topic>KCNQ3 Potassium Channel - genetics</topic><topic>KCNQ3 Potassium Channel - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation, Missense</topic><topic>Phenotype</topic><topic>Phenylenediamines - pharmacology</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - pathology</topic><topic>Structural Homology, Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miceli, Francesco</creatorcontrib><creatorcontrib>Soldovieri, Maria Virginia</creatorcontrib><creatorcontrib>Ambrosino, Paolo</creatorcontrib><creatorcontrib>Barrese, Vincenzo</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><creatorcontrib>Cilio, Maria Roberta</creatorcontrib><creatorcontrib>Taglialatela, Maurizio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miceli, Francesco</au><au>Soldovieri, Maria Virginia</au><au>Ambrosino, Paolo</au><au>Barrese, Vincenzo</au><au>Migliore, Michele</au><au>Cilio, Maria Roberta</au><au>Taglialatela, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-03-12</date><risdate>2013</risdate><volume>110</volume><issue>11</issue><spage>4386</spage><pages>4386-</pages><eissn>1091-6490</eissn><abstract>Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.</abstract><cop>United States</cop><pmid>23440208</pmid><doi>10.1073/pnas.1216867110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1091-6490
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (11), p.4386
issn 1091-6490
language eng
recordid cdi_pubmed_primary_23440208
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Substitution
Animals
Anticonvulsants - pharmacology
Carbamates - pharmacology
CHO Cells
Cricetinae
Cricetulus
Epilepsy, Benign Neonatal - genetics
Epilepsy, Benign Neonatal - metabolism
Epilepsy, Benign Neonatal - pathology
Genotype
Humans
KCNQ2 Potassium Channel - chemistry
KCNQ2 Potassium Channel - genetics
KCNQ2 Potassium Channel - metabolism
KCNQ3 Potassium Channel - genetics
KCNQ3 Potassium Channel - metabolism
Models, Molecular
Mutation, Missense
Phenotype
Phenylenediamines - pharmacology
Pyramidal Cells - metabolism
Pyramidal Cells - pathology
Structural Homology, Protein
title Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genotype-phenotype%20correlations%20in%20neonatal%20epilepsies%20caused%20by%20mutations%20in%20the%20voltage%20sensor%20of%20K(v)7.2%20potassium%20channel%20subunits&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Miceli,%20Francesco&rft.date=2013-03-12&rft.volume=110&rft.issue=11&rft.spage=4386&rft.pages=4386-&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216867110&rft_dat=%3Cpubmed%3E23440208%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23440208&rfr_iscdi=true