Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits
Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-03, Vol.110 (11), p.4386 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 4386 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Miceli, Francesco Soldovieri, Maria Virginia Ambrosino, Paolo Barrese, Vincenzo Migliore, Michele Cilio, Maria Roberta Taglialatela, Maurizio |
description | Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy. |
doi_str_mv | 10.1073/pnas.1216867110 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_23440208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23440208</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-8f3a41cc65c0496e0bb7d06ee1c1da846118a3ab473422da18d53cea1bf2d8b43</originalsourceid><addsrcrecordid>eNpFkLFOwzAURS0kREthZkMeYUjxi93EGVEFBVGJBebq2XmhRoltxU6l_gDfzQCI6Z7h6AyXsSsQSxC1vIse0xJKqHRVA4gTNgfRQFGpRszYeUqfQohmpcUZm5VSKVEKPWdfG_IhHyMVcf9L3IZxpB6zCz5x57mn4DFjzym6nmJylLjFKVHLzZEPU_5X8574IfQZP4gn8imMPHT85eZwWy9LHkPGlNw0cLtH76nnaTKTdzldsNMO-0SXv7tg748Pb-unYvu6eV7fb4sICnKhO4kKrK1WVqimImFM3YqKCCy0qFUFoFGiUbVUZdki6HYlLSGYrmy1UXLBrn-6cTIDtbs4ugHH4-7vEPkN_GZkmw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Miceli, Francesco ; Soldovieri, Maria Virginia ; Ambrosino, Paolo ; Barrese, Vincenzo ; Migliore, Michele ; Cilio, Maria Roberta ; Taglialatela, Maurizio</creator><creatorcontrib>Miceli, Francesco ; Soldovieri, Maria Virginia ; Ambrosino, Paolo ; Barrese, Vincenzo ; Migliore, Michele ; Cilio, Maria Roberta ; Taglialatela, Maurizio</creatorcontrib><description>Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.</description><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216867110</identifier><identifier>PMID: 23440208</identifier><language>eng</language><publisher>United States</publisher><subject>Amino Acid Substitution ; Animals ; Anticonvulsants - pharmacology ; Carbamates - pharmacology ; CHO Cells ; Cricetinae ; Cricetulus ; Epilepsy, Benign Neonatal - genetics ; Epilepsy, Benign Neonatal - metabolism ; Epilepsy, Benign Neonatal - pathology ; Genotype ; Humans ; KCNQ2 Potassium Channel - chemistry ; KCNQ2 Potassium Channel - genetics ; KCNQ2 Potassium Channel - metabolism ; KCNQ3 Potassium Channel - genetics ; KCNQ3 Potassium Channel - metabolism ; Models, Molecular ; Mutation, Missense ; Phenotype ; Phenylenediamines - pharmacology ; Pyramidal Cells - metabolism ; Pyramidal Cells - pathology ; Structural Homology, Protein</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (11), p.4386</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23440208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miceli, Francesco</creatorcontrib><creatorcontrib>Soldovieri, Maria Virginia</creatorcontrib><creatorcontrib>Ambrosino, Paolo</creatorcontrib><creatorcontrib>Barrese, Vincenzo</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><creatorcontrib>Cilio, Maria Roberta</creatorcontrib><creatorcontrib>Taglialatela, Maurizio</creatorcontrib><title>Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.</description><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Anticonvulsants - pharmacology</subject><subject>Carbamates - pharmacology</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Epilepsy, Benign Neonatal - genetics</subject><subject>Epilepsy, Benign Neonatal - metabolism</subject><subject>Epilepsy, Benign Neonatal - pathology</subject><subject>Genotype</subject><subject>Humans</subject><subject>KCNQ2 Potassium Channel - chemistry</subject><subject>KCNQ2 Potassium Channel - genetics</subject><subject>KCNQ2 Potassium Channel - metabolism</subject><subject>KCNQ3 Potassium Channel - genetics</subject><subject>KCNQ3 Potassium Channel - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation, Missense</subject><subject>Phenotype</subject><subject>Phenylenediamines - pharmacology</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - pathology</subject><subject>Structural Homology, Protein</subject><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkLFOwzAURS0kREthZkMeYUjxi93EGVEFBVGJBebq2XmhRoltxU6l_gDfzQCI6Z7h6AyXsSsQSxC1vIse0xJKqHRVA4gTNgfRQFGpRszYeUqfQohmpcUZm5VSKVEKPWdfG_IhHyMVcf9L3IZxpB6zCz5x57mn4DFjzym6nmJylLjFKVHLzZEPU_5X8574IfQZP4gn8imMPHT85eZwWy9LHkPGlNw0cLtH76nnaTKTdzldsNMO-0SXv7tg748Pb-unYvu6eV7fb4sICnKhO4kKrK1WVqimImFM3YqKCCy0qFUFoFGiUbVUZdki6HYlLSGYrmy1UXLBrn-6cTIDtbs4ugHH4-7vEPkN_GZkmw</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Miceli, Francesco</creator><creator>Soldovieri, Maria Virginia</creator><creator>Ambrosino, Paolo</creator><creator>Barrese, Vincenzo</creator><creator>Migliore, Michele</creator><creator>Cilio, Maria Roberta</creator><creator>Taglialatela, Maurizio</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20130312</creationdate><title>Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits</title><author>Miceli, Francesco ; Soldovieri, Maria Virginia ; Ambrosino, Paolo ; Barrese, Vincenzo ; Migliore, Michele ; Cilio, Maria Roberta ; Taglialatela, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-8f3a41cc65c0496e0bb7d06ee1c1da846118a3ab473422da18d53cea1bf2d8b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Anticonvulsants - pharmacology</topic><topic>Carbamates - pharmacology</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Epilepsy, Benign Neonatal - genetics</topic><topic>Epilepsy, Benign Neonatal - metabolism</topic><topic>Epilepsy, Benign Neonatal - pathology</topic><topic>Genotype</topic><topic>Humans</topic><topic>KCNQ2 Potassium Channel - chemistry</topic><topic>KCNQ2 Potassium Channel - genetics</topic><topic>KCNQ2 Potassium Channel - metabolism</topic><topic>KCNQ3 Potassium Channel - genetics</topic><topic>KCNQ3 Potassium Channel - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation, Missense</topic><topic>Phenotype</topic><topic>Phenylenediamines - pharmacology</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - pathology</topic><topic>Structural Homology, Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miceli, Francesco</creatorcontrib><creatorcontrib>Soldovieri, Maria Virginia</creatorcontrib><creatorcontrib>Ambrosino, Paolo</creatorcontrib><creatorcontrib>Barrese, Vincenzo</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><creatorcontrib>Cilio, Maria Roberta</creatorcontrib><creatorcontrib>Taglialatela, Maurizio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miceli, Francesco</au><au>Soldovieri, Maria Virginia</au><au>Ambrosino, Paolo</au><au>Barrese, Vincenzo</au><au>Migliore, Michele</au><au>Cilio, Maria Roberta</au><au>Taglialatela, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-03-12</date><risdate>2013</risdate><volume>110</volume><issue>11</issue><spage>4386</spage><pages>4386-</pages><eissn>1091-6490</eissn><abstract>Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.</abstract><cop>United States</cop><pmid>23440208</pmid><doi>10.1073/pnas.1216867110</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1091-6490 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (11), p.4386 |
issn | 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_23440208 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Substitution Animals Anticonvulsants - pharmacology Carbamates - pharmacology CHO Cells Cricetinae Cricetulus Epilepsy, Benign Neonatal - genetics Epilepsy, Benign Neonatal - metabolism Epilepsy, Benign Neonatal - pathology Genotype Humans KCNQ2 Potassium Channel - chemistry KCNQ2 Potassium Channel - genetics KCNQ2 Potassium Channel - metabolism KCNQ3 Potassium Channel - genetics KCNQ3 Potassium Channel - metabolism Models, Molecular Mutation, Missense Phenotype Phenylenediamines - pharmacology Pyramidal Cells - metabolism Pyramidal Cells - pathology Structural Homology, Protein |
title | Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genotype-phenotype%20correlations%20in%20neonatal%20epilepsies%20caused%20by%20mutations%20in%20the%20voltage%20sensor%20of%20K(v)7.2%20potassium%20channel%20subunits&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Miceli,%20Francesco&rft.date=2013-03-12&rft.volume=110&rft.issue=11&rft.spage=4386&rft.pages=4386-&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216867110&rft_dat=%3Cpubmed%3E23440208%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23440208&rfr_iscdi=true |