Truncated Robust Distance for Clinical Laboratory Safety Data Monitoring and Assessment

Laboratory safety data are routinely collected in clinical studies for safety monitoring and assessment. We have developed a truncated robust multivariate outlier detection method for identifying subjects with clinically relevant abnormal laboratory measurements. The proposed method can be applied t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biopharmaceutical statistics 2012-11, Vol.22 (6), p.1174-1192
Hauptverfasser: Lin, Xiwu, Parks, Daniel, Zhu, Lei, Curtis, Lloyd, Steel, Helen, Rut, Andrew, Mooser, Vincent, Cardon, Lon, Menius, Alan, Lee, Kwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laboratory safety data are routinely collected in clinical studies for safety monitoring and assessment. We have developed a truncated robust multivariate outlier detection method for identifying subjects with clinically relevant abnormal laboratory measurements. The proposed method can be applied to historical clinical data to establish a multivariate decision boundary that can then be used for future clinical trial laboratory safety data monitoring and assessment. Simulations demonstrate that the proposed method has the ability to detect relevant outliers while automatically excluding irrelevant outliers. Two examples from actual clinical studies are used to illustrate the use of this method for identifying clinically relevant outliers.
ISSN:1054-3406
1520-5711
DOI:10.1080/10543406.2011.580483