Applications of light scattering in dye-sensitized solar cells

Light scattering is a method that has been employed in dye-sensitized solar cells for optical absorption enhancement. In conventional dye-sensitized solar cells, large TiO 2 particles with sizes comparable to the wavelength of visible light are used as scatterers by either being mixed into the nanoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2012-01, Vol.14 (43), p.14982-14998
Hauptverfasser: Zhang, Qifeng, Myers, Daniel, Lan, Jolin, Jenekhe, Samson A, Cao, Guozhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light scattering is a method that has been employed in dye-sensitized solar cells for optical absorption enhancement. In conventional dye-sensitized solar cells, large TiO 2 particles with sizes comparable to the wavelength of visible light are used as scatterers by either being mixed into the nanocrystalline film to generate light scattering or forming a scattering layer on the top of the nanocrystalline film to reflect the incident light, with the aim to extend the traveling distance of incident light within the photoelectrode film. Recently, hierarchical nanostructures, for example nanocrystallite aggregates (among others), have been applied to dye-sensitized solar cells. When used to form a photoelectrode film, these hierarchical nanostructures have demonstrated a dual function: providing large specific surface area; and generating light scattering. Some other merits, such as the capability to enhance electron transport, have been also observed on the hierarchically structured photoelectrode films. Hierarchical nanostructures possessing an architecture that may provide sufficient internal surface area for dye adsorption and meanwhile may generate highly effective light scattering, make them able to create photoelectrode films with optical absorption significantly more efficient than the dispersed nanoparticles used in conventional dye-sensitized solar cells. This allows reduction of the thickness of the photoelectrode film and thus lowering of the charge recombination in dye-sensitized solar cells, making it possible to increase further the efficiency of existing dye-sensitized solar cells. This paper reviews the applications of light scattering in DSCs over the past two decades and some recent progress in this topic.
ISSN:1463-9076
1463-9084
DOI:10.1039/c2cp43089d