Plasmonic nanograting design for inverted polymer solar cells

Plasmonic nanostructures for effective light trapping in a variety of photovoltaics have been actively studied. Metallic nanograting structures are one of promising architectures. In this study, we investigated numerically absorption enhancement mechanisms in inverted polymer photovoltaics with one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2012-09, Vol.20 Suppl 5, p.A729
Hauptverfasser: Kim, Inho, Jeong, Doo Seok, Lee, Taek Seong, Lee, Wook Seong, Lee, Kyeong-Seok
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A729
container_title Optics express
container_volume 20 Suppl 5
creator Kim, Inho
Jeong, Doo Seok
Lee, Taek Seong
Lee, Wook Seong
Lee, Kyeong-Seok
description Plasmonic nanostructures for effective light trapping in a variety of photovoltaics have been actively studied. Metallic nanograting structures are one of promising architectures. In this study, we investigated numerically absorption enhancement mechanisms in inverted polymer photovoltaics with one dimensional Ag nanograting in backcontact. An optical spacer layer of TiO , which also may act as an electron transport layer, was introduced between nanograting pillars. Using a finite-difference-time domain method and performing a modal analysis, we explored correlations between absorption enhancements and dimensional parameters of nanograting such as period as well as height and width. The optimal design of nanograting for effective light trapping especially near optical band gap of an active layer was discussed, and 23% of absorption enhancement in a random polarization was demonstrated numerically with the optimally designed nanograting. In addition, the beneficial role of the optical spacer in plasmonic light trapping was also discussed.
doi_str_mv 10.1364/OE.20.00A729
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_23037540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23037540</sourcerecordid><originalsourceid>FETCH-LOGICAL-p108t-801c01ce0d23b0a1f6280480f15febd7e7f1b54295c37d97809e51353987b3003</originalsourceid><addsrcrecordid>eNo1j09LwzAcQIMgbk5vniVfoPWXf0ty8DDGnMJgHvQ80uaXUknTklRh315BhQfv9uARcsegZmItH467mkMNsNHcXpAlAysrCUYvyHUpHwBMaquvyIILEFpJWJLH1-jKMKa-pcmlsctu7lNHPZa-SzSMmfbpC_OMnk5jPA-YaRmjy7TFGMsNuQwuFrz984q8P-3ets_V4bh_2W4O1cTAzJUB1v6A4LlowLGw5gakgcBUwMZr1IE1SnKrWqG91QYsKiaUsEY3AkCsyP1vd_psBvSnKfeDy-fT_4f4BrItRtA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasmonic nanograting design for inverted polymer solar cells</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kim, Inho ; Jeong, Doo Seok ; Lee, Taek Seong ; Lee, Wook Seong ; Lee, Kyeong-Seok</creator><creatorcontrib>Kim, Inho ; Jeong, Doo Seok ; Lee, Taek Seong ; Lee, Wook Seong ; Lee, Kyeong-Seok</creatorcontrib><description>Plasmonic nanostructures for effective light trapping in a variety of photovoltaics have been actively studied. Metallic nanograting structures are one of promising architectures. In this study, we investigated numerically absorption enhancement mechanisms in inverted polymer photovoltaics with one dimensional Ag nanograting in backcontact. An optical spacer layer of TiO , which also may act as an electron transport layer, was introduced between nanograting pillars. Using a finite-difference-time domain method and performing a modal analysis, we explored correlations between absorption enhancements and dimensional parameters of nanograting such as period as well as height and width. The optimal design of nanograting for effective light trapping especially near optical band gap of an active layer was discussed, and 23% of absorption enhancement in a random polarization was demonstrated numerically with the optimally designed nanograting. In addition, the beneficial role of the optical spacer in plasmonic light trapping was also discussed.</description><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.20.00A729</identifier><identifier>PMID: 23037540</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2012-09, Vol.20 Suppl 5, p.A729</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23037540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Inho</creatorcontrib><creatorcontrib>Jeong, Doo Seok</creatorcontrib><creatorcontrib>Lee, Taek Seong</creatorcontrib><creatorcontrib>Lee, Wook Seong</creatorcontrib><creatorcontrib>Lee, Kyeong-Seok</creatorcontrib><title>Plasmonic nanograting design for inverted polymer solar cells</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Plasmonic nanostructures for effective light trapping in a variety of photovoltaics have been actively studied. Metallic nanograting structures are one of promising architectures. In this study, we investigated numerically absorption enhancement mechanisms in inverted polymer photovoltaics with one dimensional Ag nanograting in backcontact. An optical spacer layer of TiO , which also may act as an electron transport layer, was introduced between nanograting pillars. Using a finite-difference-time domain method and performing a modal analysis, we explored correlations between absorption enhancements and dimensional parameters of nanograting such as period as well as height and width. The optimal design of nanograting for effective light trapping especially near optical band gap of an active layer was discussed, and 23% of absorption enhancement in a random polarization was demonstrated numerically with the optimally designed nanograting. In addition, the beneficial role of the optical spacer in plasmonic light trapping was also discussed.</description><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo1j09LwzAcQIMgbk5vniVfoPWXf0ty8DDGnMJgHvQ80uaXUknTklRh315BhQfv9uARcsegZmItH467mkMNsNHcXpAlAysrCUYvyHUpHwBMaquvyIILEFpJWJLH1-jKMKa-pcmlsctu7lNHPZa-SzSMmfbpC_OMnk5jPA-YaRmjy7TFGMsNuQwuFrz984q8P-3ets_V4bh_2W4O1cTAzJUB1v6A4LlowLGw5gakgcBUwMZr1IE1SnKrWqG91QYsKiaUsEY3AkCsyP1vd_psBvSnKfeDy-fT_4f4BrItRtA</recordid><startdate>20120910</startdate><enddate>20120910</enddate><creator>Kim, Inho</creator><creator>Jeong, Doo Seok</creator><creator>Lee, Taek Seong</creator><creator>Lee, Wook Seong</creator><creator>Lee, Kyeong-Seok</creator><scope>NPM</scope></search><sort><creationdate>20120910</creationdate><title>Plasmonic nanograting design for inverted polymer solar cells</title><author>Kim, Inho ; Jeong, Doo Seok ; Lee, Taek Seong ; Lee, Wook Seong ; Lee, Kyeong-Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p108t-801c01ce0d23b0a1f6280480f15febd7e7f1b54295c37d97809e51353987b3003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Inho</creatorcontrib><creatorcontrib>Jeong, Doo Seok</creatorcontrib><creatorcontrib>Lee, Taek Seong</creatorcontrib><creatorcontrib>Lee, Wook Seong</creatorcontrib><creatorcontrib>Lee, Kyeong-Seok</creatorcontrib><collection>PubMed</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Inho</au><au>Jeong, Doo Seok</au><au>Lee, Taek Seong</au><au>Lee, Wook Seong</au><au>Lee, Kyeong-Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic nanograting design for inverted polymer solar cells</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2012-09-10</date><risdate>2012</risdate><volume>20 Suppl 5</volume><spage>A729</spage><pages>A729-</pages><eissn>1094-4087</eissn><abstract>Plasmonic nanostructures for effective light trapping in a variety of photovoltaics have been actively studied. Metallic nanograting structures are one of promising architectures. In this study, we investigated numerically absorption enhancement mechanisms in inverted polymer photovoltaics with one dimensional Ag nanograting in backcontact. An optical spacer layer of TiO , which also may act as an electron transport layer, was introduced between nanograting pillars. Using a finite-difference-time domain method and performing a modal analysis, we explored correlations between absorption enhancements and dimensional parameters of nanograting such as period as well as height and width. The optimal design of nanograting for effective light trapping especially near optical band gap of an active layer was discussed, and 23% of absorption enhancement in a random polarization was demonstrated numerically with the optimally designed nanograting. In addition, the beneficial role of the optical spacer in plasmonic light trapping was also discussed.</abstract><cop>United States</cop><pmid>23037540</pmid><doi>10.1364/OE.20.00A729</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1094-4087
ispartof Optics express, 2012-09, Vol.20 Suppl 5, p.A729
issn 1094-4087
language eng
recordid cdi_pubmed_primary_23037540
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title Plasmonic nanograting design for inverted polymer solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20nanograting%20design%20for%20inverted%20polymer%20solar%20cells&rft.jtitle=Optics%20express&rft.au=Kim,%20Inho&rft.date=2012-09-10&rft.volume=20%20Suppl%205&rft.spage=A729&rft.pages=A729-&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.20.00A729&rft_dat=%3Cpubmed%3E23037540%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23037540&rfr_iscdi=true