Active Subspace: Toward Scalable Low-Rank Learning

We address the scalability issues in low-rank matrix learning problems. Usually these problems resort to solving nuclear norm regularized optimization problems (NNROPs), which often suffer from high computational complexities if based on existing solvers, especially in large-scale settings. Based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2012-12, Vol.24 (12), p.3371-3394
Hauptverfasser: Liu, Guangcan, Yan, Shuicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!