A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR

The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2012-09, Vol.14 (35), p.1215-12113
Hauptverfasser: Martin, Richard A, Twyman, Helen L, Rees, Gregory J, Smith, Jodie M, Barney, Emma R, Smith, Mark E, Hanna, John V, Newport, Robert J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12113
container_issue 35
container_start_page 1215
container_title Physical chemistry chemical physics : PCCP
container_volume 14
creator Martin, Richard A
Twyman, Helen L
Rees, Gregory J
Smith, Jodie M
Barney, Emma R
Smith, Mark E
Hanna, John V
Newport, Robert J
description The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 < r (Å) < 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. 23 Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR.
doi_str_mv 10.1039/c2cp41725a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22868255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1034517782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fdb6a82d6da544eab4200fc9905ed3cc3f5362a297ec40b3517e6819b472c83c3</originalsourceid><addsrcrecordid>eNqN0UtrFTEUB_Agiq3VjXslLgQpXM1rZpJlKb6gKoiuhzN53EYzmds8Wvwa_cSm3ttb3IirHDi__PM4CD2l5DUlXL3RTG8EHVgH99AhFT1fKSLF_X099AfoUc4_CCG0o_whOmBM9pJ13SG6PsG5pKpLTRCwj5c2F7-G4peIF4fLucUQfkLweLalieyLxca3PX6qf9SVL-c-4skvoIu_tHgdIGdcs49rHG0tqSHjnUs3_VZDNHiuofhYdbCQcF6CN-0a0KI_f_r6GD1wELJ9sluP0Pd3b7-dflidfXn_8fTkbKUFF2XlzNSDZKY30AlhYRKMEKeVIp01XGvuOt4zYGqwWpCJd3SwvaRqEgPTkmt-hF5tczdpuajt3ePss7YhQLRLzSMlkjGqeir-g3LR8gfJGj3eUp2WnJN14yb5GdKvhm6cGu_G1fDzXW6dZmv29HY-DbzcAcgaQvvDqH2-cz1TQjLZ3LOtS1nvu38d9OJf_XFjHP8N_Za1kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034517782</pqid></control><display><type>article</type><title>A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Martin, Richard A ; Twyman, Helen L ; Rees, Gregory J ; Smith, Jodie M ; Barney, Emma R ; Smith, Mark E ; Hanna, John V ; Newport, Robert J</creator><creatorcontrib>Martin, Richard A ; Twyman, Helen L ; Rees, Gregory J ; Smith, Jodie M ; Barney, Emma R ; Smith, Mark E ; Hanna, John V ; Newport, Robert J</creatorcontrib><description>The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 &lt; r (Å) &lt; 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. 23 Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp41725a</identifier><identifier>PMID: 22868255</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ceramics - chemistry ; Chemistry ; Correlation ; Exact sciences and technology ; General and physical chemistry ; Glass ; Lithium ; Metals, Alkali - analysis ; Neutron Diffraction ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Sodium ; Solid state ; Spinning</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-09, Vol.14 (35), p.1215-12113</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fdb6a82d6da544eab4200fc9905ed3cc3f5362a297ec40b3517e6819b472c83c3</citedby><cites>FETCH-LOGICAL-c434t-fdb6a82d6da544eab4200fc9905ed3cc3f5362a297ec40b3517e6819b472c83c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26294828$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22868255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Richard A</creatorcontrib><creatorcontrib>Twyman, Helen L</creatorcontrib><creatorcontrib>Rees, Gregory J</creatorcontrib><creatorcontrib>Smith, Jodie M</creatorcontrib><creatorcontrib>Barney, Emma R</creatorcontrib><creatorcontrib>Smith, Mark E</creatorcontrib><creatorcontrib>Hanna, John V</creatorcontrib><creatorcontrib>Newport, Robert J</creatorcontrib><title>A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 &lt; r (Å) &lt; 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. 23 Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR.</description><subject>Ceramics - chemistry</subject><subject>Chemistry</subject><subject>Correlation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>Lithium</subject><subject>Metals, Alkali - analysis</subject><subject>Neutron Diffraction</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Sodium</subject><subject>Solid state</subject><subject>Spinning</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0UtrFTEUB_Agiq3VjXslLgQpXM1rZpJlKb6gKoiuhzN53EYzmds8Wvwa_cSm3ttb3IirHDi__PM4CD2l5DUlXL3RTG8EHVgH99AhFT1fKSLF_X099AfoUc4_CCG0o_whOmBM9pJ13SG6PsG5pKpLTRCwj5c2F7-G4peIF4fLucUQfkLweLalieyLxca3PX6qf9SVL-c-4skvoIu_tHgdIGdcs49rHG0tqSHjnUs3_VZDNHiuofhYdbCQcF6CN-0a0KI_f_r6GD1wELJ9sluP0Pd3b7-dflidfXn_8fTkbKUFF2XlzNSDZKY30AlhYRKMEKeVIp01XGvuOt4zYGqwWpCJd3SwvaRqEgPTkmt-hF5tczdpuajt3ePss7YhQLRLzSMlkjGqeir-g3LR8gfJGj3eUp2WnJN14yb5GdKvhm6cGu_G1fDzXW6dZmv29HY-DbzcAcgaQvvDqH2-cz1TQjLZ3LOtS1nvu38d9OJf_XFjHP8N_Za1kQ</recordid><startdate>20120921</startdate><enddate>20120921</enddate><creator>Martin, Richard A</creator><creator>Twyman, Helen L</creator><creator>Rees, Gregory J</creator><creator>Smith, Jodie M</creator><creator>Barney, Emma R</creator><creator>Smith, Mark E</creator><creator>Hanna, John V</creator><creator>Newport, Robert J</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120921</creationdate><title>A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR</title><author>Martin, Richard A ; Twyman, Helen L ; Rees, Gregory J ; Smith, Jodie M ; Barney, Emma R ; Smith, Mark E ; Hanna, John V ; Newport, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fdb6a82d6da544eab4200fc9905ed3cc3f5362a297ec40b3517e6819b472c83c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ceramics - chemistry</topic><topic>Chemistry</topic><topic>Correlation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>Lithium</topic><topic>Metals, Alkali - analysis</topic><topic>Neutron Diffraction</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Sodium</topic><topic>Solid state</topic><topic>Spinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Richard A</creatorcontrib><creatorcontrib>Twyman, Helen L</creatorcontrib><creatorcontrib>Rees, Gregory J</creatorcontrib><creatorcontrib>Smith, Jodie M</creatorcontrib><creatorcontrib>Barney, Emma R</creatorcontrib><creatorcontrib>Smith, Mark E</creatorcontrib><creatorcontrib>Hanna, John V</creatorcontrib><creatorcontrib>Newport, Robert J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Richard A</au><au>Twyman, Helen L</au><au>Rees, Gregory J</au><au>Smith, Jodie M</au><au>Barney, Emma R</au><au>Smith, Mark E</au><au>Hanna, John V</au><au>Newport, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-09-21</date><risdate>2012</risdate><volume>14</volume><issue>35</issue><spage>1215</spage><epage>12113</epage><pages>1215-12113</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 &lt; r (Å) &lt; 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. 23 Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22868255</pmid><doi>10.1039/c2cp41725a</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2012-09, Vol.14 (35), p.1215-12113
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_22868255
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Ceramics - chemistry
Chemistry
Correlation
Exact sciences and technology
General and physical chemistry
Glass
Lithium
Metals, Alkali - analysis
Neutron Diffraction
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Sodium
Solid state
Spinning
title A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20structural%20investigation%20of%20the%20alkali%20metal%20site%20distribution%20within%20bioactive%20glass%20using%20neutron%20diffraction%20and%20multinuclear%20solid%20state%20NMR&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Martin,%20Richard%20A&rft.date=2012-09-21&rft.volume=14&rft.issue=35&rft.spage=1215&rft.epage=12113&rft.pages=1215-12113&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp41725a&rft_dat=%3Cproquest_pubme%3E1034517782%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034517782&rft_id=info:pmid/22868255&rfr_iscdi=true