A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2012-09, Vol.14 (35), p.1215-12113 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12113 |
---|---|
container_issue | 35 |
container_start_page | 1215 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 14 |
creator | Martin, Richard A Twyman, Helen L Rees, Gregory J Smith, Jodie M Barney, Emma R Smith, Mark E Hanna, John V Newport, Robert J |
description | The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective
isomorphic
substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 <
r
(Å) < 3 region
via
the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms.
23
Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design.
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. |
doi_str_mv | 10.1039/c2cp41725a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22868255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1034517782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fdb6a82d6da544eab4200fc9905ed3cc3f5362a297ec40b3517e6819b472c83c3</originalsourceid><addsrcrecordid>eNqN0UtrFTEUB_Agiq3VjXslLgQpXM1rZpJlKb6gKoiuhzN53EYzmds8Wvwa_cSm3ttb3IirHDi__PM4CD2l5DUlXL3RTG8EHVgH99AhFT1fKSLF_X099AfoUc4_CCG0o_whOmBM9pJ13SG6PsG5pKpLTRCwj5c2F7-G4peIF4fLucUQfkLweLalieyLxca3PX6qf9SVL-c-4skvoIu_tHgdIGdcs49rHG0tqSHjnUs3_VZDNHiuofhYdbCQcF6CN-0a0KI_f_r6GD1wELJ9sluP0Pd3b7-dflidfXn_8fTkbKUFF2XlzNSDZKY30AlhYRKMEKeVIp01XGvuOt4zYGqwWpCJd3SwvaRqEgPTkmt-hF5tczdpuajt3ePss7YhQLRLzSMlkjGqeir-g3LR8gfJGj3eUp2WnJN14yb5GdKvhm6cGu_G1fDzXW6dZmv29HY-DbzcAcgaQvvDqH2-cz1TQjLZ3LOtS1nvu38d9OJf_XFjHP8N_Za1kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034517782</pqid></control><display><type>article</type><title>A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Martin, Richard A ; Twyman, Helen L ; Rees, Gregory J ; Smith, Jodie M ; Barney, Emma R ; Smith, Mark E ; Hanna, John V ; Newport, Robert J</creator><creatorcontrib>Martin, Richard A ; Twyman, Helen L ; Rees, Gregory J ; Smith, Jodie M ; Barney, Emma R ; Smith, Mark E ; Hanna, John V ; Newport, Robert J</creatorcontrib><description>The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective
isomorphic
substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 <
r
(Å) < 3 region
via
the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms.
23
Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design.
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp41725a</identifier><identifier>PMID: 22868255</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ceramics - chemistry ; Chemistry ; Correlation ; Exact sciences and technology ; General and physical chemistry ; Glass ; Lithium ; Metals, Alkali - analysis ; Neutron Diffraction ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Sodium ; Solid state ; Spinning</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-09, Vol.14 (35), p.1215-12113</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fdb6a82d6da544eab4200fc9905ed3cc3f5362a297ec40b3517e6819b472c83c3</citedby><cites>FETCH-LOGICAL-c434t-fdb6a82d6da544eab4200fc9905ed3cc3f5362a297ec40b3517e6819b472c83c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26294828$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22868255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Richard A</creatorcontrib><creatorcontrib>Twyman, Helen L</creatorcontrib><creatorcontrib>Rees, Gregory J</creatorcontrib><creatorcontrib>Smith, Jodie M</creatorcontrib><creatorcontrib>Barney, Emma R</creatorcontrib><creatorcontrib>Smith, Mark E</creatorcontrib><creatorcontrib>Hanna, John V</creatorcontrib><creatorcontrib>Newport, Robert J</creatorcontrib><title>A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective
isomorphic
substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 <
r
(Å) < 3 region
via
the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms.
23
Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design.
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR.</description><subject>Ceramics - chemistry</subject><subject>Chemistry</subject><subject>Correlation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>Lithium</subject><subject>Metals, Alkali - analysis</subject><subject>Neutron Diffraction</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Sodium</subject><subject>Solid state</subject><subject>Spinning</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0UtrFTEUB_Agiq3VjXslLgQpXM1rZpJlKb6gKoiuhzN53EYzmds8Wvwa_cSm3ttb3IirHDi__PM4CD2l5DUlXL3RTG8EHVgH99AhFT1fKSLF_X099AfoUc4_CCG0o_whOmBM9pJ13SG6PsG5pKpLTRCwj5c2F7-G4peIF4fLucUQfkLweLalieyLxca3PX6qf9SVL-c-4skvoIu_tHgdIGdcs49rHG0tqSHjnUs3_VZDNHiuofhYdbCQcF6CN-0a0KI_f_r6GD1wELJ9sluP0Pd3b7-dflidfXn_8fTkbKUFF2XlzNSDZKY30AlhYRKMEKeVIp01XGvuOt4zYGqwWpCJd3SwvaRqEgPTkmt-hF5tczdpuajt3ePss7YhQLRLzSMlkjGqeir-g3LR8gfJGj3eUp2WnJN14yb5GdKvhm6cGu_G1fDzXW6dZmv29HY-DbzcAcgaQvvDqH2-cz1TQjLZ3LOtS1nvu38d9OJf_XFjHP8N_Za1kQ</recordid><startdate>20120921</startdate><enddate>20120921</enddate><creator>Martin, Richard A</creator><creator>Twyman, Helen L</creator><creator>Rees, Gregory J</creator><creator>Smith, Jodie M</creator><creator>Barney, Emma R</creator><creator>Smith, Mark E</creator><creator>Hanna, John V</creator><creator>Newport, Robert J</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120921</creationdate><title>A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR</title><author>Martin, Richard A ; Twyman, Helen L ; Rees, Gregory J ; Smith, Jodie M ; Barney, Emma R ; Smith, Mark E ; Hanna, John V ; Newport, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fdb6a82d6da544eab4200fc9905ed3cc3f5362a297ec40b3517e6819b472c83c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ceramics - chemistry</topic><topic>Chemistry</topic><topic>Correlation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>Lithium</topic><topic>Metals, Alkali - analysis</topic><topic>Neutron Diffraction</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Sodium</topic><topic>Solid state</topic><topic>Spinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Richard A</creatorcontrib><creatorcontrib>Twyman, Helen L</creatorcontrib><creatorcontrib>Rees, Gregory J</creatorcontrib><creatorcontrib>Smith, Jodie M</creatorcontrib><creatorcontrib>Barney, Emma R</creatorcontrib><creatorcontrib>Smith, Mark E</creatorcontrib><creatorcontrib>Hanna, John V</creatorcontrib><creatorcontrib>Newport, Robert J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Richard A</au><au>Twyman, Helen L</au><au>Rees, Gregory J</au><au>Smith, Jodie M</au><au>Barney, Emma R</au><au>Smith, Mark E</au><au>Hanna, John V</au><au>Newport, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-09-21</date><risdate>2012</risdate><volume>14</volume><issue>35</issue><spage>1215</spage><epage>12113</epage><pages>1215-12113</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective
isomorphic
substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 <
r
(Å) < 3 region
via
the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms.
23
Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design.
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22868255</pmid><doi>10.1039/c2cp41725a</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2012-09, Vol.14 (35), p.1215-12113 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_22868255 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Ceramics - chemistry Chemistry Correlation Exact sciences and technology General and physical chemistry Glass Lithium Metals, Alkali - analysis Neutron Diffraction Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Sodium Solid state Spinning |
title | A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20structural%20investigation%20of%20the%20alkali%20metal%20site%20distribution%20within%20bioactive%20glass%20using%20neutron%20diffraction%20and%20multinuclear%20solid%20state%20NMR&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Martin,%20Richard%20A&rft.date=2012-09-21&rft.volume=14&rft.issue=35&rft.spage=1215&rft.epage=12113&rft.pages=1215-12113&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp41725a&rft_dat=%3Cproquest_pubme%3E1034517782%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034517782&rft_id=info:pmid/22868255&rfr_iscdi=true |