Track Creation and Deletion Framework for Long-Term Online Multiface Tracking

To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2013-01, Vol.22 (1), p.272-285
Hauptverfasser: Duffner, S., Odobez, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 1
container_start_page 272
container_title IEEE transactions on image processing
container_volume 22
creator Duffner, S.
Odobez, J.
description To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management.
doi_str_mv 10.1109/TIP.2012.2210238
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_22851262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6248702</ieee_id><sourcerecordid>1283652917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-d6c6bb1e8dcceceec1e95a0731ba0fe83f56f77bc2868923e050268a517a8aaa3</originalsourceid><addsrcrecordid>eNqN0d9L5DAQB_AgJ_463w8OjoII99I1M21-9FH2zlNY0Ye95zLNTqXapl6yRfzvbd3VA598SkI-M0PyFeIbyBmALM6WV7czlIAzRJCY2R1xAEUOqZQ5fhn3UpnUQF7si8MY76WEXIHeE_uIVgFqPBDXy0DuIZkHpnXT-4T8KvnFLb8eLgJ1_NSHh6TuQ7Lo_V265NAlN75tPCfXQ7tuanKcvDZp_N1XsVtTG_l4ux6Jvxe_l_PLdHHz52p-vkhdrnCdrrTTVQVsV86xY3bAhSJpMqhI1myzWunamMqh1bbAjKWSqC0pMGSJKDsSPzd9H0P_b-C4LrsmOm5b8twPsQS0mVZYgPkENZm2qIuJnnyg9_0Q_PiQSWGej99pRyU3yoU-xsB1-RiajsJzCbKcUinHVMoplXKbyljyY9t4qDpevRe8xTCC0y2g6KitA3nXxP9OW5UVOLnvG9cw8_u1xtyacdALrGqbow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272440578</pqid></control><display><type>article</type><title>Track Creation and Deletion Framework for Long-Term Online Multiface Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Duffner, S. ; Odobez, J.</creator><creatorcontrib>Duffner, S. ; Odobez, J.</creatorcontrib><description>To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2210238</identifier><identifier>PMID: 22851262</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Bayes Theorem ; Bayesian analysis ; Biometric Identification - methods ; Computational modeling ; Detection, estimation, filtering, equalization, prediction ; Detectors ; Exact sciences and technology ; Face ; Face - anatomy &amp; histology ; Face detection ; Face tracking ; Failure ; failure detection ; Filtering ; Filtration ; Hidden Markov models ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Information, signal and communications theory ; long term ; Management ; Markov analysis ; Markov Chains ; Monte Carlo Method ; Monte Carlo methods ; Monte Carlo simulation ; multi-object tracking ; Pattern recognition ; Plugs ; probabilistic models ; Robustness ; Signal and communications theory ; Signal processing ; Signal, noise ; Target tracking ; Telecommunications and information theory ; track management ; Tracking</subject><ispartof>IEEE transactions on image processing, 2013-01, Vol.22 (1), p.272-285</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-d6c6bb1e8dcceceec1e95a0731ba0fe83f56f77bc2868923e050268a517a8aaa3</citedby><cites>FETCH-LOGICAL-c452t-d6c6bb1e8dcceceec1e95a0731ba0fe83f56f77bc2868923e050268a517a8aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6248702$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6248702$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26853922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22851262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duffner, S.</creatorcontrib><creatorcontrib>Odobez, J.</creatorcontrib><title>Track Creation and Deletion Framework for Long-Term Online Multiface Tracking</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biometric Identification - methods</subject><subject>Computational modeling</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Face</subject><subject>Face - anatomy &amp; histology</subject><subject>Face detection</subject><subject>Face tracking</subject><subject>Failure</subject><subject>failure detection</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Information, signal and communications theory</subject><subject>long term</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>multi-object tracking</subject><subject>Pattern recognition</subject><subject>Plugs</subject><subject>probabilistic models</subject><subject>Robustness</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Target tracking</subject><subject>Telecommunications and information theory</subject><subject>track management</subject><subject>Tracking</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqN0d9L5DAQB_AgJ_463w8OjoII99I1M21-9FH2zlNY0Ye95zLNTqXapl6yRfzvbd3VA598SkI-M0PyFeIbyBmALM6WV7czlIAzRJCY2R1xAEUOqZQ5fhn3UpnUQF7si8MY76WEXIHeE_uIVgFqPBDXy0DuIZkHpnXT-4T8KvnFLb8eLgJ1_NSHh6TuQ7Lo_V265NAlN75tPCfXQ7tuanKcvDZp_N1XsVtTG_l4ux6Jvxe_l_PLdHHz52p-vkhdrnCdrrTTVQVsV86xY3bAhSJpMqhI1myzWunamMqh1bbAjKWSqC0pMGSJKDsSPzd9H0P_b-C4LrsmOm5b8twPsQS0mVZYgPkENZm2qIuJnnyg9_0Q_PiQSWGej99pRyU3yoU-xsB1-RiajsJzCbKcUinHVMoplXKbyljyY9t4qDpevRe8xTCC0y2g6KitA3nXxP9OW5UVOLnvG9cw8_u1xtyacdALrGqbow</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Duffner, S.</creator><creator>Odobez, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201301</creationdate><title>Track Creation and Deletion Framework for Long-Term Online Multiface Tracking</title><author>Duffner, S. ; Odobez, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-d6c6bb1e8dcceceec1e95a0731ba0fe83f56f77bc2868923e050268a517a8aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biometric Identification - methods</topic><topic>Computational modeling</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Face</topic><topic>Face - anatomy &amp; histology</topic><topic>Face detection</topic><topic>Face tracking</topic><topic>Failure</topic><topic>failure detection</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Information, signal and communications theory</topic><topic>long term</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>multi-object tracking</topic><topic>Pattern recognition</topic><topic>Plugs</topic><topic>probabilistic models</topic><topic>Robustness</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Target tracking</topic><topic>Telecommunications and information theory</topic><topic>track management</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duffner, S.</creatorcontrib><creatorcontrib>Odobez, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duffner, S.</au><au>Odobez, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Track Creation and Deletion Framework for Long-Term Online Multiface Tracking</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-01</date><risdate>2013</risdate><volume>22</volume><issue>1</issue><spage>272</spage><epage>285</epage><pages>272-285</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22851262</pmid><doi>10.1109/TIP.2012.2210238</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2013-01, Vol.22 (1), p.272-285
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_22851262
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Bayes Theorem
Bayesian analysis
Biometric Identification - methods
Computational modeling
Detection, estimation, filtering, equalization, prediction
Detectors
Exact sciences and technology
Face
Face - anatomy & histology
Face detection
Face tracking
Failure
failure detection
Filtering
Filtration
Hidden Markov models
Humans
Image processing
Image Processing, Computer-Assisted - methods
Information, signal and communications theory
long term
Management
Markov analysis
Markov Chains
Monte Carlo Method
Monte Carlo methods
Monte Carlo simulation
multi-object tracking
Pattern recognition
Plugs
probabilistic models
Robustness
Signal and communications theory
Signal processing
Signal, noise
Target tracking
Telecommunications and information theory
track management
Tracking
title Track Creation and Deletion Framework for Long-Term Online Multiface Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Track%20Creation%20and%20Deletion%20Framework%20for%20Long-Term%20Online%20Multiface%20Tracking&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Duffner,%20S.&rft.date=2013-01&rft.volume=22&rft.issue=1&rft.spage=272&rft.epage=285&rft.pages=272-285&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2210238&rft_dat=%3Cproquest_RIE%3E1283652917%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272440578&rft_id=info:pmid/22851262&rft_ieee_id=6248702&rfr_iscdi=true