Track Creation and Deletion Framework for Long-Term Online Multiface Tracking
To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2013-01, Vol.22 (1), p.272-285 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 285 |
---|---|
container_issue | 1 |
container_start_page | 272 |
container_title | IEEE transactions on image processing |
container_volume | 22 |
creator | Duffner, S. Odobez, J. |
description | To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management. |
doi_str_mv | 10.1109/TIP.2012.2210238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_22851262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6248702</ieee_id><sourcerecordid>1283652917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-d6c6bb1e8dcceceec1e95a0731ba0fe83f56f77bc2868923e050268a517a8aaa3</originalsourceid><addsrcrecordid>eNqN0d9L5DAQB_AgJ_463w8OjoII99I1M21-9FH2zlNY0Ye95zLNTqXapl6yRfzvbd3VA598SkI-M0PyFeIbyBmALM6WV7czlIAzRJCY2R1xAEUOqZQ5fhn3UpnUQF7si8MY76WEXIHeE_uIVgFqPBDXy0DuIZkHpnXT-4T8KvnFLb8eLgJ1_NSHh6TuQ7Lo_V265NAlN75tPCfXQ7tuanKcvDZp_N1XsVtTG_l4ux6Jvxe_l_PLdHHz52p-vkhdrnCdrrTTVQVsV86xY3bAhSJpMqhI1myzWunamMqh1bbAjKWSqC0pMGSJKDsSPzd9H0P_b-C4LrsmOm5b8twPsQS0mVZYgPkENZm2qIuJnnyg9_0Q_PiQSWGej99pRyU3yoU-xsB1-RiajsJzCbKcUinHVMoplXKbyljyY9t4qDpevRe8xTCC0y2g6KitA3nXxP9OW5UVOLnvG9cw8_u1xtyacdALrGqbow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272440578</pqid></control><display><type>article</type><title>Track Creation and Deletion Framework for Long-Term Online Multiface Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Duffner, S. ; Odobez, J.</creator><creatorcontrib>Duffner, S. ; Odobez, J.</creatorcontrib><description>To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2210238</identifier><identifier>PMID: 22851262</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Bayes Theorem ; Bayesian analysis ; Biometric Identification - methods ; Computational modeling ; Detection, estimation, filtering, equalization, prediction ; Detectors ; Exact sciences and technology ; Face ; Face - anatomy & histology ; Face detection ; Face tracking ; Failure ; failure detection ; Filtering ; Filtration ; Hidden Markov models ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Information, signal and communications theory ; long term ; Management ; Markov analysis ; Markov Chains ; Monte Carlo Method ; Monte Carlo methods ; Monte Carlo simulation ; multi-object tracking ; Pattern recognition ; Plugs ; probabilistic models ; Robustness ; Signal and communications theory ; Signal processing ; Signal, noise ; Target tracking ; Telecommunications and information theory ; track management ; Tracking</subject><ispartof>IEEE transactions on image processing, 2013-01, Vol.22 (1), p.272-285</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-d6c6bb1e8dcceceec1e95a0731ba0fe83f56f77bc2868923e050268a517a8aaa3</citedby><cites>FETCH-LOGICAL-c452t-d6c6bb1e8dcceceec1e95a0731ba0fe83f56f77bc2868923e050268a517a8aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6248702$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6248702$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22851262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duffner, S.</creatorcontrib><creatorcontrib>Odobez, J.</creatorcontrib><title>Track Creation and Deletion Framework for Long-Term Online Multiface Tracking</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biometric Identification - methods</subject><subject>Computational modeling</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Face</subject><subject>Face - anatomy & histology</subject><subject>Face detection</subject><subject>Face tracking</subject><subject>Failure</subject><subject>failure detection</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Information, signal and communications theory</subject><subject>long term</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>multi-object tracking</subject><subject>Pattern recognition</subject><subject>Plugs</subject><subject>probabilistic models</subject><subject>Robustness</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Target tracking</subject><subject>Telecommunications and information theory</subject><subject>track management</subject><subject>Tracking</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqN0d9L5DAQB_AgJ_463w8OjoII99I1M21-9FH2zlNY0Ye95zLNTqXapl6yRfzvbd3VA598SkI-M0PyFeIbyBmALM6WV7czlIAzRJCY2R1xAEUOqZQ5fhn3UpnUQF7si8MY76WEXIHeE_uIVgFqPBDXy0DuIZkHpnXT-4T8KvnFLb8eLgJ1_NSHh6TuQ7Lo_V265NAlN75tPCfXQ7tuanKcvDZp_N1XsVtTG_l4ux6Jvxe_l_PLdHHz52p-vkhdrnCdrrTTVQVsV86xY3bAhSJpMqhI1myzWunamMqh1bbAjKWSqC0pMGSJKDsSPzd9H0P_b-C4LrsmOm5b8twPsQS0mVZYgPkENZm2qIuJnnyg9_0Q_PiQSWGej99pRyU3yoU-xsB1-RiajsJzCbKcUinHVMoplXKbyljyY9t4qDpevRe8xTCC0y2g6KitA3nXxP9OW5UVOLnvG9cw8_u1xtyacdALrGqbow</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Duffner, S.</creator><creator>Odobez, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201301</creationdate><title>Track Creation and Deletion Framework for Long-Term Online Multiface Tracking</title><author>Duffner, S. ; Odobez, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-d6c6bb1e8dcceceec1e95a0731ba0fe83f56f77bc2868923e050268a517a8aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biometric Identification - methods</topic><topic>Computational modeling</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Face</topic><topic>Face - anatomy & histology</topic><topic>Face detection</topic><topic>Face tracking</topic><topic>Failure</topic><topic>failure detection</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Information, signal and communications theory</topic><topic>long term</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>multi-object tracking</topic><topic>Pattern recognition</topic><topic>Plugs</topic><topic>probabilistic models</topic><topic>Robustness</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Target tracking</topic><topic>Telecommunications and information theory</topic><topic>track management</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duffner, S.</creatorcontrib><creatorcontrib>Odobez, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duffner, S.</au><au>Odobez, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Track Creation and Deletion Framework for Long-Term Online Multiface Tracking</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-01</date><risdate>2013</risdate><volume>22</volume><issue>1</issue><spage>272</spage><epage>285</epage><pages>272-285</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22851262</pmid><doi>10.1109/TIP.2012.2210238</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2013-01, Vol.22 (1), p.272-285 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_22851262 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Bayes Theorem Bayesian analysis Biometric Identification - methods Computational modeling Detection, estimation, filtering, equalization, prediction Detectors Exact sciences and technology Face Face - anatomy & histology Face detection Face tracking Failure failure detection Filtering Filtration Hidden Markov models Humans Image processing Image Processing, Computer-Assisted - methods Information, signal and communications theory long term Management Markov analysis Markov Chains Monte Carlo Method Monte Carlo methods Monte Carlo simulation multi-object tracking Pattern recognition Plugs probabilistic models Robustness Signal and communications theory Signal processing Signal, noise Target tracking Telecommunications and information theory track management Tracking |
title | Track Creation and Deletion Framework for Long-Term Online Multiface Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Track%20Creation%20and%20Deletion%20Framework%20for%20Long-Term%20Online%20Multiface%20Tracking&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Duffner,%20S.&rft.date=2013-01&rft.volume=22&rft.issue=1&rft.spage=272&rft.epage=285&rft.pages=272-285&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2210238&rft_dat=%3Cproquest_RIE%3E1283652917%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272440578&rft_id=info:pmid/22851262&rft_ieee_id=6248702&rfr_iscdi=true |