Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents

The Ca ²⁺-permeable cation channel transient receptor potential melastatin 2 (TRPM2) plays a key role in pathogen-evoked phagocyte activation, postischemic neuronal apoptosis, and glucose-evoked insulin secretion, by linking these cellular responses to oxidative stress. TRPM2 channels are coactivate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-08, Vol.109 (33), p.13440-13445
Hauptverfasser: Tóth, Balázs, Csanády, László
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13445
container_issue 33
container_start_page 13440
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Tóth, Balázs
Csanády, László
description The Ca ²⁺-permeable cation channel transient receptor potential melastatin 2 (TRPM2) plays a key role in pathogen-evoked phagocyte activation, postischemic neuronal apoptosis, and glucose-evoked insulin secretion, by linking these cellular responses to oxidative stress. TRPM2 channels are coactivated by binding of intracellular ADP ribose and Ca ²⁺ to distinct cytosolically accessible sites on the channels. These ligands likely regulate the activation gate, conserved in the voltage-gated cation channel superfamily, that comprises a helix bundle formed by the intracellular ends of transmembrane helix six of each subunit. For several K ⁺ and TRPM family channels, activation gate opening requires the presence of phosphatidylinositol-bisphosphate (PIP ₂) in the inner membrane leaflet. Most TRPM family channels inactivate upon prolonged stimulation in inside-out patches; this “rundown” is due to PIP ₂ depletion. TRPM2 currents also run down within minutes, but the molecular mechanism of this process is unknown. Here we report that high-affinity PIP ₂ binding regulates Ca ²⁺ sensitivity of TRPM2 activation. Nevertheless, TRPM2 inactivation is not due to PIP ₂ depletion; rather, it is state dependent, sensitive to permeating ions, and can be completely prevented by mutations in the extracellular selectivity filter. Introduction of two negative charges plus a single-residue insertion, to mimic the filter sequence of TRPM5, results in TRPM2 channels that maintain unabated maximal activity for over 1 h, and display altered permeation properties but intact ADP ribose/Ca ²⁺-dependent gating. Thus, upon prolonged stimulation, the TRPM2 selectivity filter undergoes a conformational change reminiscent of that accompanying C-type inactivation of voltage-gated K ⁺ channels. The noninactivating TRPM2 variant will be invaluable for gating studies.
doi_str_mv 10.1073/pnas.1204702109
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_pubmed_primary_22847436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41700938</jstor_id><sourcerecordid>41700938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-411d0d201bb46c8fa84bf4c95d30f4ad6c4403cc4f9901da5de3b9b3fb05402f3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotuFMycgUi9c0s7YzocvSKjio1KrVqU9W45jt15l7cVOVuK_x6ss28LFljW_eeM3j5B3CKcIDTvbeJVOkQJvgCKIF2SRTyxrLuAlWQDQpmw55UfkOKUVAIiqhdfkiNKWN5zVC3J7E6IpdBgGtUmmmHxv4uBMKlyMZmtict1gCueVHt1WjS74Itji7vbmihZ6futH5b0ZCj3lFj-mN-SVVUMyb_f3ktx_-3p3_qO8vP5-cf7lstSVwLHkiD30FLDreK1bq1reWa5F1TOwXPW15hyY1twKAdirqjesEx2zHVQcqGVL8nnW3Uzd2vQ6z45qkJvo1ir-lkE5-W_Fu0f5ELaScZpXhlng014ghl-TSaNcu6RNXoU3YUoSW2DImgqrjJ78h67CFH22JxEYq2oUNc3U2UzpGFKKxh4-gyB3ecldXvIpr9zx4bmHA_83oAwUe2DX-SQnJGMS2W5FS_J-RlZpDPHAcGxy3qzN9Y9z3aog1UN0Sd7_zP5rAKSCNTX7Ayqdr2s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033561962</pqid></control><display><type>article</type><title>Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tóth, Balázs ; Csanády, László</creator><creatorcontrib>Tóth, Balázs ; Csanády, László</creatorcontrib><description>The Ca ²⁺-permeable cation channel transient receptor potential melastatin 2 (TRPM2) plays a key role in pathogen-evoked phagocyte activation, postischemic neuronal apoptosis, and glucose-evoked insulin secretion, by linking these cellular responses to oxidative stress. TRPM2 channels are coactivated by binding of intracellular ADP ribose and Ca ²⁺ to distinct cytosolically accessible sites on the channels. These ligands likely regulate the activation gate, conserved in the voltage-gated cation channel superfamily, that comprises a helix bundle formed by the intracellular ends of transmembrane helix six of each subunit. For several K ⁺ and TRPM family channels, activation gate opening requires the presence of phosphatidylinositol-bisphosphate (PIP ₂) in the inner membrane leaflet. Most TRPM family channels inactivate upon prolonged stimulation in inside-out patches; this “rundown” is due to PIP ₂ depletion. TRPM2 currents also run down within minutes, but the molecular mechanism of this process is unknown. Here we report that high-affinity PIP ₂ binding regulates Ca ²⁺ sensitivity of TRPM2 activation. Nevertheless, TRPM2 inactivation is not due to PIP ₂ depletion; rather, it is state dependent, sensitive to permeating ions, and can be completely prevented by mutations in the extracellular selectivity filter. Introduction of two negative charges plus a single-residue insertion, to mimic the filter sequence of TRPM5, results in TRPM2 channels that maintain unabated maximal activity for over 1 h, and display altered permeation properties but intact ADP ribose/Ca ²⁺-dependent gating. Thus, upon prolonged stimulation, the TRPM2 selectivity filter undergoes a conformational change reminiscent of that accompanying C-type inactivation of voltage-gated K ⁺ channels. The noninactivating TRPM2 variant will be invaluable for gating studies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1204702109</identifier><identifier>PMID: 22847436</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adenosine diphosphate ; Adenosine Diphosphate Ribose - metabolism ; Amino Acid Sequence ; Amino Acid Substitution - genetics ; Animals ; apoptosis ; Binding sites ; Biochemistry ; Biological Sciences ; calcium ; Calcium - metabolism ; Cations ; Cell Membrane Permeability ; Electric current ; Electrostatics ; Extracellular Space - metabolism ; Female ; insulin secretion ; Intracellular Space - metabolism ; Ion Channel Gating ; Ions ; Kinetics ; Ligands ; Molecular Sequence Data ; mutation ; Mutation - genetics ; Oxidative stress ; Patch-Clamp Techniques ; Pathogens ; Permeability ; phagocytes ; Phosphatidylinositol 4,5-Diphosphate - metabolism ; Physiological regulation ; Pipettes ; Porosity ; Protein Binding ; Receptors ; ribose ; Sequence Alignment ; Static Electricity ; Time constants ; transient receptor potential channels ; TRPM Cation Channels - metabolism ; Xenopus laevis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-08, Vol.109 (33), p.13440-13445</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 14, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-411d0d201bb46c8fa84bf4c95d30f4ad6c4403cc4f9901da5de3b9b3fb05402f3</citedby><cites>FETCH-LOGICAL-c591t-411d0d201bb46c8fa84bf4c95d30f4ad6c4403cc4f9901da5de3b9b3fb05402f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41700938$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41700938$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22847436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tóth, Balázs</creatorcontrib><creatorcontrib>Csanády, László</creatorcontrib><title>Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Ca ²⁺-permeable cation channel transient receptor potential melastatin 2 (TRPM2) plays a key role in pathogen-evoked phagocyte activation, postischemic neuronal apoptosis, and glucose-evoked insulin secretion, by linking these cellular responses to oxidative stress. TRPM2 channels are coactivated by binding of intracellular ADP ribose and Ca ²⁺ to distinct cytosolically accessible sites on the channels. These ligands likely regulate the activation gate, conserved in the voltage-gated cation channel superfamily, that comprises a helix bundle formed by the intracellular ends of transmembrane helix six of each subunit. For several K ⁺ and TRPM family channels, activation gate opening requires the presence of phosphatidylinositol-bisphosphate (PIP ₂) in the inner membrane leaflet. Most TRPM family channels inactivate upon prolonged stimulation in inside-out patches; this “rundown” is due to PIP ₂ depletion. TRPM2 currents also run down within minutes, but the molecular mechanism of this process is unknown. Here we report that high-affinity PIP ₂ binding regulates Ca ²⁺ sensitivity of TRPM2 activation. Nevertheless, TRPM2 inactivation is not due to PIP ₂ depletion; rather, it is state dependent, sensitive to permeating ions, and can be completely prevented by mutations in the extracellular selectivity filter. Introduction of two negative charges plus a single-residue insertion, to mimic the filter sequence of TRPM5, results in TRPM2 channels that maintain unabated maximal activity for over 1 h, and display altered permeation properties but intact ADP ribose/Ca ²⁺-dependent gating. Thus, upon prolonged stimulation, the TRPM2 selectivity filter undergoes a conformational change reminiscent of that accompanying C-type inactivation of voltage-gated K ⁺ channels. The noninactivating TRPM2 variant will be invaluable for gating studies.</description><subject>adenosine diphosphate</subject><subject>Adenosine Diphosphate Ribose - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution - genetics</subject><subject>Animals</subject><subject>apoptosis</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Cations</subject><subject>Cell Membrane Permeability</subject><subject>Electric current</subject><subject>Electrostatics</subject><subject>Extracellular Space - metabolism</subject><subject>Female</subject><subject>insulin secretion</subject><subject>Intracellular Space - metabolism</subject><subject>Ion Channel Gating</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Molecular Sequence Data</subject><subject>mutation</subject><subject>Mutation - genetics</subject><subject>Oxidative stress</subject><subject>Patch-Clamp Techniques</subject><subject>Pathogens</subject><subject>Permeability</subject><subject>phagocytes</subject><subject>Phosphatidylinositol 4,5-Diphosphate - metabolism</subject><subject>Physiological regulation</subject><subject>Pipettes</subject><subject>Porosity</subject><subject>Protein Binding</subject><subject>Receptors</subject><subject>ribose</subject><subject>Sequence Alignment</subject><subject>Static Electricity</subject><subject>Time constants</subject><subject>transient receptor potential channels</subject><subject>TRPM Cation Channels - metabolism</subject><subject>Xenopus laevis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EotuFMycgUi9c0s7YzocvSKjio1KrVqU9W45jt15l7cVOVuK_x6ss28LFljW_eeM3j5B3CKcIDTvbeJVOkQJvgCKIF2SRTyxrLuAlWQDQpmw55UfkOKUVAIiqhdfkiNKWN5zVC3J7E6IpdBgGtUmmmHxv4uBMKlyMZmtict1gCueVHt1WjS74Itji7vbmihZ6futH5b0ZCj3lFj-mN-SVVUMyb_f3ktx_-3p3_qO8vP5-cf7lstSVwLHkiD30FLDreK1bq1reWa5F1TOwXPW15hyY1twKAdirqjesEx2zHVQcqGVL8nnW3Uzd2vQ6z45qkJvo1ir-lkE5-W_Fu0f5ELaScZpXhlng014ghl-TSaNcu6RNXoU3YUoSW2DImgqrjJ78h67CFH22JxEYq2oUNc3U2UzpGFKKxh4-gyB3ecldXvIpr9zx4bmHA_83oAwUe2DX-SQnJGMS2W5FS_J-RlZpDPHAcGxy3qzN9Y9z3aog1UN0Sd7_zP5rAKSCNTX7Ayqdr2s</recordid><startdate>20120814</startdate><enddate>20120814</enddate><creator>Tóth, Balázs</creator><creator>Csanády, László</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120814</creationdate><title>Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents</title><author>Tóth, Balázs ; Csanády, László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-411d0d201bb46c8fa84bf4c95d30f4ad6c4403cc4f9901da5de3b9b3fb05402f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adenosine diphosphate</topic><topic>Adenosine Diphosphate Ribose - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution - genetics</topic><topic>Animals</topic><topic>apoptosis</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Cations</topic><topic>Cell Membrane Permeability</topic><topic>Electric current</topic><topic>Electrostatics</topic><topic>Extracellular Space - metabolism</topic><topic>Female</topic><topic>insulin secretion</topic><topic>Intracellular Space - metabolism</topic><topic>Ion Channel Gating</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Molecular Sequence Data</topic><topic>mutation</topic><topic>Mutation - genetics</topic><topic>Oxidative stress</topic><topic>Patch-Clamp Techniques</topic><topic>Pathogens</topic><topic>Permeability</topic><topic>phagocytes</topic><topic>Phosphatidylinositol 4,5-Diphosphate - metabolism</topic><topic>Physiological regulation</topic><topic>Pipettes</topic><topic>Porosity</topic><topic>Protein Binding</topic><topic>Receptors</topic><topic>ribose</topic><topic>Sequence Alignment</topic><topic>Static Electricity</topic><topic>Time constants</topic><topic>transient receptor potential channels</topic><topic>TRPM Cation Channels - metabolism</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tóth, Balázs</creatorcontrib><creatorcontrib>Csanády, László</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tóth, Balázs</au><au>Csanády, László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-08-14</date><risdate>2012</risdate><volume>109</volume><issue>33</issue><spage>13440</spage><epage>13445</epage><pages>13440-13445</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Ca ²⁺-permeable cation channel transient receptor potential melastatin 2 (TRPM2) plays a key role in pathogen-evoked phagocyte activation, postischemic neuronal apoptosis, and glucose-evoked insulin secretion, by linking these cellular responses to oxidative stress. TRPM2 channels are coactivated by binding of intracellular ADP ribose and Ca ²⁺ to distinct cytosolically accessible sites on the channels. These ligands likely regulate the activation gate, conserved in the voltage-gated cation channel superfamily, that comprises a helix bundle formed by the intracellular ends of transmembrane helix six of each subunit. For several K ⁺ and TRPM family channels, activation gate opening requires the presence of phosphatidylinositol-bisphosphate (PIP ₂) in the inner membrane leaflet. Most TRPM family channels inactivate upon prolonged stimulation in inside-out patches; this “rundown” is due to PIP ₂ depletion. TRPM2 currents also run down within minutes, but the molecular mechanism of this process is unknown. Here we report that high-affinity PIP ₂ binding regulates Ca ²⁺ sensitivity of TRPM2 activation. Nevertheless, TRPM2 inactivation is not due to PIP ₂ depletion; rather, it is state dependent, sensitive to permeating ions, and can be completely prevented by mutations in the extracellular selectivity filter. Introduction of two negative charges plus a single-residue insertion, to mimic the filter sequence of TRPM5, results in TRPM2 channels that maintain unabated maximal activity for over 1 h, and display altered permeation properties but intact ADP ribose/Ca ²⁺-dependent gating. Thus, upon prolonged stimulation, the TRPM2 selectivity filter undergoes a conformational change reminiscent of that accompanying C-type inactivation of voltage-gated K ⁺ channels. The noninactivating TRPM2 variant will be invaluable for gating studies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22847436</pmid><doi>10.1073/pnas.1204702109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-08, Vol.109 (33), p.13440-13445
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_22847436
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects adenosine diphosphate
Adenosine Diphosphate Ribose - metabolism
Amino Acid Sequence
Amino Acid Substitution - genetics
Animals
apoptosis
Binding sites
Biochemistry
Biological Sciences
calcium
Calcium - metabolism
Cations
Cell Membrane Permeability
Electric current
Electrostatics
Extracellular Space - metabolism
Female
insulin secretion
Intracellular Space - metabolism
Ion Channel Gating
Ions
Kinetics
Ligands
Molecular Sequence Data
mutation
Mutation - genetics
Oxidative stress
Patch-Clamp Techniques
Pathogens
Permeability
phagocytes
Phosphatidylinositol 4,5-Diphosphate - metabolism
Physiological regulation
Pipettes
Porosity
Protein Binding
Receptors
ribose
Sequence Alignment
Static Electricity
Time constants
transient receptor potential channels
TRPM Cation Channels - metabolism
Xenopus laevis
title Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20collapse%20underlies%20irreversible%20inactivation%20of%20TRPM2%20cation%20channel%20currents&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=T%C3%B3th,%20Bal%C3%A1zs&rft.date=2012-08-14&rft.volume=109&rft.issue=33&rft.spage=13440&rft.epage=13445&rft.pages=13440-13445&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1204702109&rft_dat=%3Cjstor_proqu%3E41700938%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033561962&rft_id=info:pmid/22847436&rft_jstor_id=41700938&rfr_iscdi=true