Recursive utility in a Markov environment with stochastic growth

Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (30), p.11967-11972
Hauptverfasser: Hansen, Lars Peter, Scheinkman, José A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11972
container_issue 30
container_start_page 11967
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Hansen, Lars Peter
Scheinkman, José A.
description Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.
doi_str_mv 10.1073/pnas.1200237109
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22778428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41684870</jstor_id><sourcerecordid>41684870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-7b157614e42f3c4cdb714ddba8f60a57c1b476dcb30a03e5fe429a4f6e5bff3e3</originalsourceid><addsrcrecordid>eNqNkcFPHCEUxomp0dX27MmGxEsvo48BBubSaExtTTQmTXsmDMO4bGeHLTBr_O_LZLdr68kLJI_f-_je-xA6IXBOQNCL1aDjOSkBSioI1Htolk9SVKyGd2iWy6KQrGSH6CjGBQDUXMIBOixLIXJdztDld2vGEN3a4jG53qVn7Aas8b0Ov_wa22Htgh-Wdkj4yaU5jsmbuY7JGfwY_FOav0f7ne6j_bC9j9HPmy8_rr8Vdw9fb6-v7grDKUuFaAgXFWGWlR01zLSNIKxtGy27CjQXhjRMVK1pKGiglncZrDXrKsubrqOWHqPPG93V2Cxta7KjoHu1Cm6pw7Py2qn_XwY3V49-rSiDWjDIAp-2AsH_Hm1MaumisX2vB-vHqIgESrik5RtQKCWQuiI8o2ev0IUfw5A3MVGiBsYrkamLDWWCjzHYbuebgJqCVFOQ6iXI3PHx33F3_N_kMoC3wNT5IlcrmiWzuenX0w2yyKmFHcNIJZkUQP8A4wauSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027904567</pqid></control><display><type>article</type><title>Recursive utility in a Markov environment with stochastic growth</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hansen, Lars Peter ; Scheinkman, José A.</creator><creatorcontrib>Hansen, Lars Peter ; Scheinkman, José A.</creatorcontrib><description>Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1200237109</identifier><identifier>PMID: 22778428</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>assets ; Consumption ; Economic Development - statistics &amp; numerical data ; Economic growth models ; Economic growth rate ; Eigenfunctions ; Eigenvalues ; equations ; Humans ; Macroeconomics ; Markov analysis ; Markov Chains ; Markov processes ; Models, Econometric ; prices ; Recursion ; risk ; Risk Assessment ; Risk aversion ; Social Sciences ; Stochastic models ; Stochastic Processes ; Utility functions ; Utility models</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (30), p.11967-11972</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 24, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-7b157614e42f3c4cdb714ddba8f60a57c1b476dcb30a03e5fe429a4f6e5bff3e3</citedby><cites>FETCH-LOGICAL-c534t-7b157614e42f3c4cdb714ddba8f60a57c1b476dcb30a03e5fe429a4f6e5bff3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/30.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41684870$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41684870$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22778428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, Lars Peter</creatorcontrib><creatorcontrib>Scheinkman, José A.</creatorcontrib><title>Recursive utility in a Markov environment with stochastic growth</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.</description><subject>assets</subject><subject>Consumption</subject><subject>Economic Development - statistics &amp; numerical data</subject><subject>Economic growth models</subject><subject>Economic growth rate</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>equations</subject><subject>Humans</subject><subject>Macroeconomics</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Models, Econometric</subject><subject>prices</subject><subject>Recursion</subject><subject>risk</subject><subject>Risk Assessment</subject><subject>Risk aversion</subject><subject>Social Sciences</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Utility functions</subject><subject>Utility models</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFPHCEUxomp0dX27MmGxEsvo48BBubSaExtTTQmTXsmDMO4bGeHLTBr_O_LZLdr68kLJI_f-_je-xA6IXBOQNCL1aDjOSkBSioI1Htolk9SVKyGd2iWy6KQrGSH6CjGBQDUXMIBOixLIXJdztDld2vGEN3a4jG53qVn7Aas8b0Ov_wa22Htgh-Wdkj4yaU5jsmbuY7JGfwY_FOav0f7ne6j_bC9j9HPmy8_rr8Vdw9fb6-v7grDKUuFaAgXFWGWlR01zLSNIKxtGy27CjQXhjRMVK1pKGiglncZrDXrKsubrqOWHqPPG93V2Cxta7KjoHu1Cm6pw7Py2qn_XwY3V49-rSiDWjDIAp-2AsH_Hm1MaumisX2vB-vHqIgESrik5RtQKCWQuiI8o2ev0IUfw5A3MVGiBsYrkamLDWWCjzHYbuebgJqCVFOQ6iXI3PHx33F3_N_kMoC3wNT5IlcrmiWzuenX0w2yyKmFHcNIJZkUQP8A4wauSQ</recordid><startdate>20120724</startdate><enddate>20120724</enddate><creator>Hansen, Lars Peter</creator><creator>Scheinkman, José A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120724</creationdate><title>Recursive utility in a Markov environment with stochastic growth</title><author>Hansen, Lars Peter ; Scheinkman, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-7b157614e42f3c4cdb714ddba8f60a57c1b476dcb30a03e5fe429a4f6e5bff3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>assets</topic><topic>Consumption</topic><topic>Economic Development - statistics &amp; numerical data</topic><topic>Economic growth models</topic><topic>Economic growth rate</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>equations</topic><topic>Humans</topic><topic>Macroeconomics</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Models, Econometric</topic><topic>prices</topic><topic>Recursion</topic><topic>risk</topic><topic>Risk Assessment</topic><topic>Risk aversion</topic><topic>Social Sciences</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Utility functions</topic><topic>Utility models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Lars Peter</creatorcontrib><creatorcontrib>Scheinkman, José A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Lars Peter</au><au>Scheinkman, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive utility in a Markov environment with stochastic growth</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-07-24</date><risdate>2012</risdate><volume>109</volume><issue>30</issue><spage>11967</spage><epage>11972</epage><pages>11967-11972</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22778428</pmid><doi>10.1073/pnas.1200237109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (30), p.11967-11972
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_22778428
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects assets
Consumption
Economic Development - statistics & numerical data
Economic growth models
Economic growth rate
Eigenfunctions
Eigenvalues
equations
Humans
Macroeconomics
Markov analysis
Markov Chains
Markov processes
Models, Econometric
prices
Recursion
risk
Risk Assessment
Risk aversion
Social Sciences
Stochastic models
Stochastic Processes
Utility functions
Utility models
title Recursive utility in a Markov environment with stochastic growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20utility%20in%20a%20Markov%20environment%20with%20stochastic%20growth&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hansen,%20Lars%20Peter&rft.date=2012-07-24&rft.volume=109&rft.issue=30&rft.spage=11967&rft.epage=11972&rft.pages=11967-11972&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1200237109&rft_dat=%3Cjstor_pubme%3E41684870%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027904567&rft_id=info:pmid/22778428&rft_jstor_id=41684870&rfr_iscdi=true