Characterization of two neuronal subclasses through constellation pharmacology
Different types of neurons diverge in function because they express their own unique set or constellation of signaling molecules, including receptors and ion channels that work in concert. We describe an approach to identify functionally divergent neurons within a large, heterogeneous neuronal popul...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (31), p.12758-12763 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12763 |
---|---|
container_issue | 31 |
container_start_page | 12758 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Teichert, Russell W Raghuraman, Shrinivasan Memon, Tosifa Cox, Jeffrey L Foulkes, Tucker Rivier, Jean E Olivera, Baldomero M |
description | Different types of neurons diverge in function because they express their own unique set or constellation of signaling molecules, including receptors and ion channels that work in concert. We describe an approach to identify functionally divergent neurons within a large, heterogeneous neuronal population while simultaneously investigating specific isoforms of signaling molecules expressed in each. In this study we characterized two subclasses of menthol-sensitive neurons from cultures of dissociated mouse dorsal-root ganglia. Although these neurons represent a small fraction of the dorsal-root ganglia neuronal population, we were able to identify them and investigate the cell-specific constellations of ion channels and receptors functionally expressed in each subclass, using a panel of selective pharmacological tools. Differences were found in the functional expression of ATP receptors, TRPA1 channels, voltage-gated calcium-, potassium-, and sodium channels, and responses to physiologically relevant cold temperatures. Furthermore, the cell-specific responses to various stimuli could be altered through pharmacological interventions targeted to the cell-specific constellation of ion channels expressed in each menthol-sensitive subclass. In fact, the normal responses to cold temperature could be reversed in the two neuronal subclasses by the coapplication of the appropriate combination of pharmacological agents. This result suggests that the functionally integrated constellation of signaling molecules in a particular type of cell is a more appropriate target for effective pharmacological intervention than a single signaling molecule. This shift from molecular to cellular targets has important implications for basic research and drug discovery. We refer to this paradigm as “constellation pharmacology.” |
doi_str_mv | 10.1073/pnas.1209759109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22778416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41685471</jstor_id><sourcerecordid>41685471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-6c790113e5e9d4a1eb13692e1d1f9c9aadbd3a2401ca6c52ae9bfe60271c00183</originalsourceid><addsrcrecordid>eNpVkc2P0zAQxS0EYsvCmRMQiXN2Z2wnji9Iq4ovaQUH2LM1cZw2VRoX2wEtfz2uUrpwsQ_v9579Zhh7iXCFoMT1YaJ4hRy0qjSCfsRW-cSylhoesxUAV2Ujubxgz2LcAYCuGnjKLjhXqpFYr9iX9ZYC2eTC8JvS4KfC90X65YvJzcFPNBZxbu1IMbpYpG3w82ZbWD_F5MZxMRxywp6sH_3m_jl70tMY3YvTfcnuPrz_vv5U3n79-Hl9c1taqXkqa6s0IApXOd1JQteiqDV32GGvrSbq2k4Ql4CWaltxcrrtXZ3roAXARlyyd0vuYW73rrNuSoFGcwjDnsK98TSY_5Vp2JqN_2mERNRK54C3p4Dgf8wuJrPzc8h9o0EQoLDmHDJ1vVA2-BiD688vIJjjAsxxAeZhAdnx-t-Pnfm_E89AcQKOzoc4bQTmIFUdy71akF1MPpyZ7G4qqTDrbxa9J29oE4Zo7r5xwDqPhmveCPEH3_OhcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030716220</pqid></control><display><type>article</type><title>Characterization of two neuronal subclasses through constellation pharmacology</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Teichert, Russell W ; Raghuraman, Shrinivasan ; Memon, Tosifa ; Cox, Jeffrey L ; Foulkes, Tucker ; Rivier, Jean E ; Olivera, Baldomero M</creator><creatorcontrib>Teichert, Russell W ; Raghuraman, Shrinivasan ; Memon, Tosifa ; Cox, Jeffrey L ; Foulkes, Tucker ; Rivier, Jean E ; Olivera, Baldomero M</creatorcontrib><description>Different types of neurons diverge in function because they express their own unique set or constellation of signaling molecules, including receptors and ion channels that work in concert. We describe an approach to identify functionally divergent neurons within a large, heterogeneous neuronal population while simultaneously investigating specific isoforms of signaling molecules expressed in each. In this study we characterized two subclasses of menthol-sensitive neurons from cultures of dissociated mouse dorsal-root ganglia. Although these neurons represent a small fraction of the dorsal-root ganglia neuronal population, we were able to identify them and investigate the cell-specific constellations of ion channels and receptors functionally expressed in each subclass, using a panel of selective pharmacological tools. Differences were found in the functional expression of ATP receptors, TRPA1 channels, voltage-gated calcium-, potassium-, and sodium channels, and responses to physiologically relevant cold temperatures. Furthermore, the cell-specific responses to various stimuli could be altered through pharmacological interventions targeted to the cell-specific constellation of ion channels expressed in each menthol-sensitive subclass. In fact, the normal responses to cold temperature could be reversed in the two neuronal subclasses by the coapplication of the appropriate combination of pharmacological agents. This result suggests that the functionally integrated constellation of signaling molecules in a particular type of cell is a more appropriate target for effective pharmacological intervention than a single signaling molecule. This shift from molecular to cellular targets has important implications for basic research and drug discovery. We refer to this paradigm as “constellation pharmacology.”</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1209759109</identifier><identifier>PMID: 22778416</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphatase ; adenosine triphosphate ; Animals ; Antipruritics - pharmacology ; Biological Sciences ; Calcium ; Cells ; cold ; Cold Temperature ; drugs ; Experimentation ; ganglia ; Ganglia, Spinal - cytology ; Ganglia, Spinal - metabolism ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - immunology ; Ion channels ; Menthol - pharmacology ; Mice ; Mice, Knockout ; Molecules ; Nerve Tissue Proteins - biosynthesis ; Nerve Tissue Proteins - genetics ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Pain ; Pharmacology ; Protein isoforms ; Receptors ; Rodents ; Sodium channels ; temperature ; Transient Receptor Potential Channels - biosynthesis ; Transient Receptor Potential Channels - genetics ; TRPA1 Cation Channel</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12758-12763</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 31, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-6c790113e5e9d4a1eb13692e1d1f9c9aadbd3a2401ca6c52ae9bfe60271c00183</citedby><cites>FETCH-LOGICAL-c492t-6c790113e5e9d4a1eb13692e1d1f9c9aadbd3a2401ca6c52ae9bfe60271c00183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41685471$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41685471$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22778416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teichert, Russell W</creatorcontrib><creatorcontrib>Raghuraman, Shrinivasan</creatorcontrib><creatorcontrib>Memon, Tosifa</creatorcontrib><creatorcontrib>Cox, Jeffrey L</creatorcontrib><creatorcontrib>Foulkes, Tucker</creatorcontrib><creatorcontrib>Rivier, Jean E</creatorcontrib><creatorcontrib>Olivera, Baldomero M</creatorcontrib><title>Characterization of two neuronal subclasses through constellation pharmacology</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Different types of neurons diverge in function because they express their own unique set or constellation of signaling molecules, including receptors and ion channels that work in concert. We describe an approach to identify functionally divergent neurons within a large, heterogeneous neuronal population while simultaneously investigating specific isoforms of signaling molecules expressed in each. In this study we characterized two subclasses of menthol-sensitive neurons from cultures of dissociated mouse dorsal-root ganglia. Although these neurons represent a small fraction of the dorsal-root ganglia neuronal population, we were able to identify them and investigate the cell-specific constellations of ion channels and receptors functionally expressed in each subclass, using a panel of selective pharmacological tools. Differences were found in the functional expression of ATP receptors, TRPA1 channels, voltage-gated calcium-, potassium-, and sodium channels, and responses to physiologically relevant cold temperatures. Furthermore, the cell-specific responses to various stimuli could be altered through pharmacological interventions targeted to the cell-specific constellation of ion channels expressed in each menthol-sensitive subclass. In fact, the normal responses to cold temperature could be reversed in the two neuronal subclasses by the coapplication of the appropriate combination of pharmacological agents. This result suggests that the functionally integrated constellation of signaling molecules in a particular type of cell is a more appropriate target for effective pharmacological intervention than a single signaling molecule. This shift from molecular to cellular targets has important implications for basic research and drug discovery. We refer to this paradigm as “constellation pharmacology.”</description><subject>Adenosine triphosphatase</subject><subject>adenosine triphosphate</subject><subject>Animals</subject><subject>Antipruritics - pharmacology</subject><subject>Biological Sciences</subject><subject>Calcium</subject><subject>Cells</subject><subject>cold</subject><subject>Cold Temperature</subject><subject>drugs</subject><subject>Experimentation</subject><subject>ganglia</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - immunology</subject><subject>Ion channels</subject><subject>Menthol - pharmacology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecules</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Pain</subject><subject>Pharmacology</subject><subject>Protein isoforms</subject><subject>Receptors</subject><subject>Rodents</subject><subject>Sodium channels</subject><subject>temperature</subject><subject>Transient Receptor Potential Channels - biosynthesis</subject><subject>Transient Receptor Potential Channels - genetics</subject><subject>TRPA1 Cation Channel</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc2P0zAQxS0EYsvCmRMQiXN2Z2wnji9Iq4ovaQUH2LM1cZw2VRoX2wEtfz2uUrpwsQ_v9579Zhh7iXCFoMT1YaJ4hRy0qjSCfsRW-cSylhoesxUAV2Ujubxgz2LcAYCuGnjKLjhXqpFYr9iX9ZYC2eTC8JvS4KfC90X65YvJzcFPNBZxbu1IMbpYpG3w82ZbWD_F5MZxMRxywp6sH_3m_jl70tMY3YvTfcnuPrz_vv5U3n79-Hl9c1taqXkqa6s0IApXOd1JQteiqDV32GGvrSbq2k4Ql4CWaltxcrrtXZ3roAXARlyyd0vuYW73rrNuSoFGcwjDnsK98TSY_5Vp2JqN_2mERNRK54C3p4Dgf8wuJrPzc8h9o0EQoLDmHDJ1vVA2-BiD688vIJjjAsxxAeZhAdnx-t-Pnfm_E89AcQKOzoc4bQTmIFUdy71akF1MPpyZ7G4qqTDrbxa9J29oE4Zo7r5xwDqPhmveCPEH3_OhcQ</recordid><startdate>20120731</startdate><enddate>20120731</enddate><creator>Teichert, Russell W</creator><creator>Raghuraman, Shrinivasan</creator><creator>Memon, Tosifa</creator><creator>Cox, Jeffrey L</creator><creator>Foulkes, Tucker</creator><creator>Rivier, Jean E</creator><creator>Olivera, Baldomero M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120731</creationdate><title>Characterization of two neuronal subclasses through constellation pharmacology</title><author>Teichert, Russell W ; Raghuraman, Shrinivasan ; Memon, Tosifa ; Cox, Jeffrey L ; Foulkes, Tucker ; Rivier, Jean E ; Olivera, Baldomero M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-6c790113e5e9d4a1eb13692e1d1f9c9aadbd3a2401ca6c52ae9bfe60271c00183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine triphosphatase</topic><topic>adenosine triphosphate</topic><topic>Animals</topic><topic>Antipruritics - pharmacology</topic><topic>Biological Sciences</topic><topic>Calcium</topic><topic>Cells</topic><topic>cold</topic><topic>Cold Temperature</topic><topic>drugs</topic><topic>Experimentation</topic><topic>ganglia</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - immunology</topic><topic>Ion channels</topic><topic>Menthol - pharmacology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecules</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Pain</topic><topic>Pharmacology</topic><topic>Protein isoforms</topic><topic>Receptors</topic><topic>Rodents</topic><topic>Sodium channels</topic><topic>temperature</topic><topic>Transient Receptor Potential Channels - biosynthesis</topic><topic>Transient Receptor Potential Channels - genetics</topic><topic>TRPA1 Cation Channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teichert, Russell W</creatorcontrib><creatorcontrib>Raghuraman, Shrinivasan</creatorcontrib><creatorcontrib>Memon, Tosifa</creatorcontrib><creatorcontrib>Cox, Jeffrey L</creatorcontrib><creatorcontrib>Foulkes, Tucker</creatorcontrib><creatorcontrib>Rivier, Jean E</creatorcontrib><creatorcontrib>Olivera, Baldomero M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teichert, Russell W</au><au>Raghuraman, Shrinivasan</au><au>Memon, Tosifa</au><au>Cox, Jeffrey L</au><au>Foulkes, Tucker</au><au>Rivier, Jean E</au><au>Olivera, Baldomero M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of two neuronal subclasses through constellation pharmacology</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-07-31</date><risdate>2012</risdate><volume>109</volume><issue>31</issue><spage>12758</spage><epage>12763</epage><pages>12758-12763</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Different types of neurons diverge in function because they express their own unique set or constellation of signaling molecules, including receptors and ion channels that work in concert. We describe an approach to identify functionally divergent neurons within a large, heterogeneous neuronal population while simultaneously investigating specific isoforms of signaling molecules expressed in each. In this study we characterized two subclasses of menthol-sensitive neurons from cultures of dissociated mouse dorsal-root ganglia. Although these neurons represent a small fraction of the dorsal-root ganglia neuronal population, we were able to identify them and investigate the cell-specific constellations of ion channels and receptors functionally expressed in each subclass, using a panel of selective pharmacological tools. Differences were found in the functional expression of ATP receptors, TRPA1 channels, voltage-gated calcium-, potassium-, and sodium channels, and responses to physiologically relevant cold temperatures. Furthermore, the cell-specific responses to various stimuli could be altered through pharmacological interventions targeted to the cell-specific constellation of ion channels expressed in each menthol-sensitive subclass. In fact, the normal responses to cold temperature could be reversed in the two neuronal subclasses by the coapplication of the appropriate combination of pharmacological agents. This result suggests that the functionally integrated constellation of signaling molecules in a particular type of cell is a more appropriate target for effective pharmacological intervention than a single signaling molecule. This shift from molecular to cellular targets has important implications for basic research and drug discovery. We refer to this paradigm as “constellation pharmacology.”</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22778416</pmid><doi>10.1073/pnas.1209759109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12758-12763 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_22778416 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine triphosphatase adenosine triphosphate Animals Antipruritics - pharmacology Biological Sciences Calcium Cells cold Cold Temperature drugs Experimentation ganglia Ganglia, Spinal - cytology Ganglia, Spinal - metabolism Gene Expression Regulation - drug effects Gene Expression Regulation - immunology Ion channels Menthol - pharmacology Mice Mice, Knockout Molecules Nerve Tissue Proteins - biosynthesis Nerve Tissue Proteins - genetics Neurons Neurons - cytology Neurons - metabolism Pain Pharmacology Protein isoforms Receptors Rodents Sodium channels temperature Transient Receptor Potential Channels - biosynthesis Transient Receptor Potential Channels - genetics TRPA1 Cation Channel |
title | Characterization of two neuronal subclasses through constellation pharmacology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20two%20neuronal%20subclasses%20through%20constellation%20pharmacology&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Teichert,%20Russell%20W&rft.date=2012-07-31&rft.volume=109&rft.issue=31&rft.spage=12758&rft.epage=12763&rft.pages=12758-12763&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1209759109&rft_dat=%3Cjstor_pubme%3E41685471%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030716220&rft_id=info:pmid/22778416&rft_jstor_id=41685471&rfr_iscdi=true |