Biologically Inspired SNN for Robot Control

This paper proposes a spiking-neural-network-based robot controller inspired by the control structures of biological systems. Information is routed through the network using facilitating dynamic synapses with short-term plasticity. Learning occurs through long-term synaptic plasticity which is imple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2013-02, Vol.43 (1), p.115-128
Hauptverfasser: Nichols, Eric, McDaid, Liam J., Siddique, Nazmul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 1
container_start_page 115
container_title IEEE transactions on cybernetics
container_volume 43
creator Nichols, Eric
McDaid, Liam J.
Siddique, Nazmul
description This paper proposes a spiking-neural-network-based robot controller inspired by the control structures of biological systems. Information is routed through the network using facilitating dynamic synapses with short-term plasticity. Learning occurs through long-term synaptic plasticity which is implemented using the temporal difference learning rule to enable the robot to learn to associate the correct movement with the appropriate input conditions. The network self-organizes to provide memories of environments that the robot encounters. A Pioneer robot simulator with laser and sonar proximity sensors is used to verify the performance of the network with a wall-following task, and the results are presented.
doi_str_mv 10.1109/TSMCB.2012.2200674
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_22736650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6220278</ieee_id><sourcerecordid>1729349259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-c5c1b6d4b4819cb28e512948599982c88b20e3de594cd4fa2afd35657de24a023</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EolXpD4CEskRCKfb4EXtJIx6VSpFoWVuJ46CgtC52sujf49LS2cxo5txZHISuCZ4QgtXDavmWTyeACUwAMBYZO0NDIEKmABk_P80iG6BxCN84lowrJS_RICJUCI6H6H7auNZ9NaZo210y24Rt422VLBeLpHY--XCl65LcbTrv2it0URdtsONjH6HP56dV_prO319m-eM8NRRolxpuSCkqVjJJlClBWk5AMcmVUhKMlCVgSyvLFTMVqwso6opywbPKAisw0BG6O_zdevfT29DpdROMbdtiY10fNMlAUaaAq4jCATXeheBtrbe-WRd-pwnWe0_6z5Pee9JHTzF0e_zfl2tbnSL_ViJwcwAaa-3pLGIeMkl_AYTRac0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729349259</pqid></control><display><type>article</type><title>Biologically Inspired SNN for Robot Control</title><source>IEEE Electronic Library (IEL)</source><creator>Nichols, Eric ; McDaid, Liam J. ; Siddique, Nazmul</creator><creatorcontrib>Nichols, Eric ; McDaid, Liam J. ; Siddique, Nazmul</creatorcontrib><description>This paper proposes a spiking-neural-network-based robot controller inspired by the control structures of biological systems. Information is routed through the network using facilitating dynamic synapses with short-term plasticity. Learning occurs through long-term synaptic plasticity which is implemented using the temporal difference learning rule to enable the robot to learn to associate the correct movement with the appropriate input conditions. The network self-organizes to provide memories of environments that the robot encounters. A Pioneer robot simulator with laser and sonar proximity sensors is used to verify the performance of the network with a wall-following task, and the results are presented.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2012.2200674</identifier><identifier>PMID: 22736650</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial Intelligence ; Biological system modeling ; Computer Simulation ; Dynamic synapses ; Models, Neurological ; Neural Networks, Computer ; Neuronal Plasticity ; Neurons ; Neurotransmitters ; Robot sensing systems ; Robotics - methods ; self-organization ; spiking neural network (SNN) ; temporal difference (TD) learning rule</subject><ispartof>IEEE transactions on cybernetics, 2013-02, Vol.43 (1), p.115-128</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-c5c1b6d4b4819cb28e512948599982c88b20e3de594cd4fa2afd35657de24a023</citedby><cites>FETCH-LOGICAL-c323t-c5c1b6d4b4819cb28e512948599982c88b20e3de594cd4fa2afd35657de24a023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6220278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6220278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22736650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Eric</creatorcontrib><creatorcontrib>McDaid, Liam J.</creatorcontrib><creatorcontrib>Siddique, Nazmul</creatorcontrib><title>Biologically Inspired SNN for Robot Control</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>This paper proposes a spiking-neural-network-based robot controller inspired by the control structures of biological systems. Information is routed through the network using facilitating dynamic synapses with short-term plasticity. Learning occurs through long-term synaptic plasticity which is implemented using the temporal difference learning rule to enable the robot to learn to associate the correct movement with the appropriate input conditions. The network self-organizes to provide memories of environments that the robot encounters. A Pioneer robot simulator with laser and sonar proximity sensors is used to verify the performance of the network with a wall-following task, and the results are presented.</description><subject>Artificial Intelligence</subject><subject>Biological system modeling</subject><subject>Computer Simulation</subject><subject>Dynamic synapses</subject><subject>Models, Neurological</subject><subject>Neural Networks, Computer</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Neurotransmitters</subject><subject>Robot sensing systems</subject><subject>Robotics - methods</subject><subject>self-organization</subject><subject>spiking neural network (SNN)</subject><subject>temporal difference (TD) learning rule</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EolXpD4CEskRCKfb4EXtJIx6VSpFoWVuJ46CgtC52sujf49LS2cxo5txZHISuCZ4QgtXDavmWTyeACUwAMBYZO0NDIEKmABk_P80iG6BxCN84lowrJS_RICJUCI6H6H7auNZ9NaZo210y24Rt422VLBeLpHY--XCl65LcbTrv2it0URdtsONjH6HP56dV_prO319m-eM8NRRolxpuSCkqVjJJlClBWk5AMcmVUhKMlCVgSyvLFTMVqwso6opywbPKAisw0BG6O_zdevfT29DpdROMbdtiY10fNMlAUaaAq4jCATXeheBtrbe-WRd-pwnWe0_6z5Pee9JHTzF0e_zfl2tbnSL_ViJwcwAaa-3pLGIeMkl_AYTRac0</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Nichols, Eric</creator><creator>McDaid, Liam J.</creator><creator>Siddique, Nazmul</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201302</creationdate><title>Biologically Inspired SNN for Robot Control</title><author>Nichols, Eric ; McDaid, Liam J. ; Siddique, Nazmul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-c5c1b6d4b4819cb28e512948599982c88b20e3de594cd4fa2afd35657de24a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial Intelligence</topic><topic>Biological system modeling</topic><topic>Computer Simulation</topic><topic>Dynamic synapses</topic><topic>Models, Neurological</topic><topic>Neural Networks, Computer</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Neurotransmitters</topic><topic>Robot sensing systems</topic><topic>Robotics - methods</topic><topic>self-organization</topic><topic>spiking neural network (SNN)</topic><topic>temporal difference (TD) learning rule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Eric</creatorcontrib><creatorcontrib>McDaid, Liam J.</creatorcontrib><creatorcontrib>Siddique, Nazmul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nichols, Eric</au><au>McDaid, Liam J.</au><au>Siddique, Nazmul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biologically Inspired SNN for Robot Control</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2013-02</date><risdate>2013</risdate><volume>43</volume><issue>1</issue><spage>115</spage><epage>128</epage><pages>115-128</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>This paper proposes a spiking-neural-network-based robot controller inspired by the control structures of biological systems. Information is routed through the network using facilitating dynamic synapses with short-term plasticity. Learning occurs through long-term synaptic plasticity which is implemented using the temporal difference learning rule to enable the robot to learn to associate the correct movement with the appropriate input conditions. The network self-organizes to provide memories of environments that the robot encounters. A Pioneer robot simulator with laser and sonar proximity sensors is used to verify the performance of the network with a wall-following task, and the results are presented.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22736650</pmid><doi>10.1109/TSMCB.2012.2200674</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2013-02, Vol.43 (1), p.115-128
issn 2168-2267
2168-2275
language eng
recordid cdi_pubmed_primary_22736650
source IEEE Electronic Library (IEL)
subjects Artificial Intelligence
Biological system modeling
Computer Simulation
Dynamic synapses
Models, Neurological
Neural Networks, Computer
Neuronal Plasticity
Neurons
Neurotransmitters
Robot sensing systems
Robotics - methods
self-organization
spiking neural network (SNN)
temporal difference (TD) learning rule
title Biologically Inspired SNN for Robot Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biologically%20Inspired%20SNN%20for%20Robot%20Control&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Nichols,%20Eric&rft.date=2013-02&rft.volume=43&rft.issue=1&rft.spage=115&rft.epage=128&rft.pages=115-128&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TSMCB.2012.2200674&rft_dat=%3Cproquest_RIE%3E1729349259%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729349259&rft_id=info:pmid/22736650&rft_ieee_id=6220278&rfr_iscdi=true