Mechanical Regulation of Nuclear Structure and Function

Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of biomedical engineering 2012-01, Vol.14 (1), p.431-455
Hauptverfasser: Martins, Rui P, Finan, John D, Farshid, Guilak, Lee, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 1
container_start_page 431
container_title Annual review of biomedical engineering
container_volume 14
creator Martins, Rui P
Finan, John D
Farshid, Guilak
Lee, David A
description Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.
doi_str_mv 10.1146/annurev-bioeng-071910-124638
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22655599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1027372747</sourcerecordid><originalsourceid>FETCH-LOGICAL-a556t-479c36885aac33cbb570986d256b5f2dcd8e280336d88379af6e36191a8795483</originalsourceid><addsrcrecordid>eNqVkMtKxDAUhoMoXkZfQbpw4aaaS3MDEWTwBqOCl3U4TdOx0knHpFV8e1s6Drp0lUD-8_0nH0JHBJ8QkolT8L4L7iPNq8b5eYol0QSnhGaCqQ20S3jG04zKbHO4U5ZqRfUO2ovxDWOsGcu20Q6lgnOu9S6Sd86-gq8s1Mmjm3c1tFXjk6ZM7jtbOwjJUxs62_aVCfgiueq8HRL7aKuEOrqD1TlBL1eXz9ObdPZwfTu9mKXAuWjTTGrLhFIcwDJm85xLrJUoKBc5L2lhC-WowoyJQikmNZTCMdH_CJTUPFNsgs5H7rLLF66wzrcBarMM1QLCl2mgMn9ffPVq5s2HYVxyjAfA8QoQmvfOxdYsqmhdXYN3TRcNwVQy2fuSffRsjNrQxBhcua4h2Azuzcq9Gd2b0b0Z3ffjh79XXQ__yO4DF2NgwEDdgyr3Gf9X8g1Clptj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027372747</pqid></control><display><type>article</type><title>Mechanical Regulation of Nuclear Structure and Function</title><source>Annual Reviews</source><source>MEDLINE</source><creator>Martins, Rui P ; Finan, John D ; Farshid, Guilak ; Lee, David A</creator><creatorcontrib>Martins, Rui P ; Finan, John D ; Farshid, Guilak ; Lee, David A</creatorcontrib><description>Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.</description><identifier>ISSN: 1523-9829</identifier><identifier>EISSN: 1545-4274</identifier><identifier>DOI: 10.1146/annurev-bioeng-071910-124638</identifier><identifier>PMID: 22655599</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Animals ; Biomedical Engineering - methods ; Cell Nucleus - metabolism ; Cell Nucleus - physiology ; Chromatin - metabolism ; chromatin organization ; Chromosomes - ultrastructure ; Cytoplasm - metabolism ; Cytoskeleton - metabolism ; Extracellular Matrix - metabolism ; Histones - metabolism ; Humans ; LINC complex ; mechanotransduction ; Mitosis ; Models, Biological ; nucleus ; Osmosis ; osmotic stress ; Signal Transduction ; Stress, Mechanical</subject><ispartof>Annual review of biomedical engineering, 2012-01, Vol.14 (1), p.431-455</ispartof><rights>Copyright © 2012 by Annual Reviews. All rights reserved 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a556t-479c36885aac33cbb570986d256b5f2dcd8e280336d88379af6e36191a8795483</citedby><cites>FETCH-LOGICAL-a556t-479c36885aac33cbb570986d256b5f2dcd8e280336d88379af6e36191a8795483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-bioeng-071910-124638?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-bioeng-071910-124638$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,230,315,782,786,887,4186,27933,27934,78264,78265</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22655599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, Rui P</creatorcontrib><creatorcontrib>Finan, John D</creatorcontrib><creatorcontrib>Farshid, Guilak</creatorcontrib><creatorcontrib>Lee, David A</creatorcontrib><title>Mechanical Regulation of Nuclear Structure and Function</title><title>Annual review of biomedical engineering</title><addtitle>Annu Rev Biomed Eng</addtitle><description>Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.</description><subject>Animals</subject><subject>Biomedical Engineering - methods</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - physiology</subject><subject>Chromatin - metabolism</subject><subject>chromatin organization</subject><subject>Chromosomes - ultrastructure</subject><subject>Cytoplasm - metabolism</subject><subject>Cytoskeleton - metabolism</subject><subject>Extracellular Matrix - metabolism</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>LINC complex</subject><subject>mechanotransduction</subject><subject>Mitosis</subject><subject>Models, Biological</subject><subject>nucleus</subject><subject>Osmosis</subject><subject>osmotic stress</subject><subject>Signal Transduction</subject><subject>Stress, Mechanical</subject><issn>1523-9829</issn><issn>1545-4274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkMtKxDAUhoMoXkZfQbpw4aaaS3MDEWTwBqOCl3U4TdOx0knHpFV8e1s6Drp0lUD-8_0nH0JHBJ8QkolT8L4L7iPNq8b5eYol0QSnhGaCqQ20S3jG04zKbHO4U5ZqRfUO2ovxDWOsGcu20Q6lgnOu9S6Sd86-gq8s1Mmjm3c1tFXjk6ZM7jtbOwjJUxs62_aVCfgiueq8HRL7aKuEOrqD1TlBL1eXz9ObdPZwfTu9mKXAuWjTTGrLhFIcwDJm85xLrJUoKBc5L2lhC-WowoyJQikmNZTCMdH_CJTUPFNsgs5H7rLLF66wzrcBarMM1QLCl2mgMn9ffPVq5s2HYVxyjAfA8QoQmvfOxdYsqmhdXYN3TRcNwVQy2fuSffRsjNrQxBhcua4h2Azuzcq9Gd2b0b0Z3ffjh79XXQ__yO4DF2NgwEDdgyr3Gf9X8g1Clptj</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Martins, Rui P</creator><creator>Finan, John D</creator><creator>Farshid, Guilak</creator><creator>Lee, David A</creator><general>Annual Reviews</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Mechanical Regulation of Nuclear Structure and Function</title><author>Martins, Rui P ; Finan, John D ; Farshid, Guilak ; Lee, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a556t-479c36885aac33cbb570986d256b5f2dcd8e280336d88379af6e36191a8795483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biomedical Engineering - methods</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - physiology</topic><topic>Chromatin - metabolism</topic><topic>chromatin organization</topic><topic>Chromosomes - ultrastructure</topic><topic>Cytoplasm - metabolism</topic><topic>Cytoskeleton - metabolism</topic><topic>Extracellular Matrix - metabolism</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>LINC complex</topic><topic>mechanotransduction</topic><topic>Mitosis</topic><topic>Models, Biological</topic><topic>nucleus</topic><topic>Osmosis</topic><topic>osmotic stress</topic><topic>Signal Transduction</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Rui P</creatorcontrib><creatorcontrib>Finan, John D</creatorcontrib><creatorcontrib>Farshid, Guilak</creatorcontrib><creatorcontrib>Lee, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Rui P</au><au>Finan, John D</au><au>Farshid, Guilak</au><au>Lee, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Regulation of Nuclear Structure and Function</atitle><jtitle>Annual review of biomedical engineering</jtitle><addtitle>Annu Rev Biomed Eng</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>14</volume><issue>1</issue><spage>431</spage><epage>455</epage><pages>431-455</pages><issn>1523-9829</issn><eissn>1545-4274</eissn><abstract>Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>22655599</pmid><doi>10.1146/annurev-bioeng-071910-124638</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1523-9829
ispartof Annual review of biomedical engineering, 2012-01, Vol.14 (1), p.431-455
issn 1523-9829
1545-4274
language eng
recordid cdi_pubmed_primary_22655599
source Annual Reviews; MEDLINE
subjects Animals
Biomedical Engineering - methods
Cell Nucleus - metabolism
Cell Nucleus - physiology
Chromatin - metabolism
chromatin organization
Chromosomes - ultrastructure
Cytoplasm - metabolism
Cytoskeleton - metabolism
Extracellular Matrix - metabolism
Histones - metabolism
Humans
LINC complex
mechanotransduction
Mitosis
Models, Biological
nucleus
Osmosis
osmotic stress
Signal Transduction
Stress, Mechanical
title Mechanical Regulation of Nuclear Structure and Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T15%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Regulation%20of%20Nuclear%20Structure%20and%20Function&rft.jtitle=Annual%20review%20of%20biomedical%20engineering&rft.au=Martins,%20Rui%20P&rft.date=2012-01-01&rft.volume=14&rft.issue=1&rft.spage=431&rft.epage=455&rft.pages=431-455&rft.issn=1523-9829&rft.eissn=1545-4274&rft_id=info:doi/10.1146/annurev-bioeng-071910-124638&rft_dat=%3Cproquest_pubme%3E1027372747%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027372747&rft_id=info:pmid/22655599&rfr_iscdi=true