Mechanical Regulation of Nuclear Structure and Function
Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced...
Gespeichert in:
Veröffentlicht in: | Annual review of biomedical engineering 2012-01, Vol.14 (1), p.431-455 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 1 |
container_start_page | 431 |
container_title | Annual review of biomedical engineering |
container_volume | 14 |
creator | Martins, Rui P Finan, John D Farshid, Guilak Lee, David A |
description | Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate. |
doi_str_mv | 10.1146/annurev-bioeng-071910-124638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22655599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1027372747</sourcerecordid><originalsourceid>FETCH-LOGICAL-a556t-479c36885aac33cbb570986d256b5f2dcd8e280336d88379af6e36191a8795483</originalsourceid><addsrcrecordid>eNqVkMtKxDAUhoMoXkZfQbpw4aaaS3MDEWTwBqOCl3U4TdOx0knHpFV8e1s6Drp0lUD-8_0nH0JHBJ8QkolT8L4L7iPNq8b5eYol0QSnhGaCqQ20S3jG04zKbHO4U5ZqRfUO2ovxDWOsGcu20Q6lgnOu9S6Sd86-gq8s1Mmjm3c1tFXjk6ZM7jtbOwjJUxs62_aVCfgiueq8HRL7aKuEOrqD1TlBL1eXz9ObdPZwfTu9mKXAuWjTTGrLhFIcwDJm85xLrJUoKBc5L2lhC-WowoyJQikmNZTCMdH_CJTUPFNsgs5H7rLLF66wzrcBarMM1QLCl2mgMn9ffPVq5s2HYVxyjAfA8QoQmvfOxdYsqmhdXYN3TRcNwVQy2fuSffRsjNrQxBhcua4h2Azuzcq9Gd2b0b0Z3ffjh79XXQ__yO4DF2NgwEDdgyr3Gf9X8g1Clptj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027372747</pqid></control><display><type>article</type><title>Mechanical Regulation of Nuclear Structure and Function</title><source>Annual Reviews</source><source>MEDLINE</source><creator>Martins, Rui P ; Finan, John D ; Farshid, Guilak ; Lee, David A</creator><creatorcontrib>Martins, Rui P ; Finan, John D ; Farshid, Guilak ; Lee, David A</creatorcontrib><description>Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.</description><identifier>ISSN: 1523-9829</identifier><identifier>EISSN: 1545-4274</identifier><identifier>DOI: 10.1146/annurev-bioeng-071910-124638</identifier><identifier>PMID: 22655599</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Animals ; Biomedical Engineering - methods ; Cell Nucleus - metabolism ; Cell Nucleus - physiology ; Chromatin - metabolism ; chromatin organization ; Chromosomes - ultrastructure ; Cytoplasm - metabolism ; Cytoskeleton - metabolism ; Extracellular Matrix - metabolism ; Histones - metabolism ; Humans ; LINC complex ; mechanotransduction ; Mitosis ; Models, Biological ; nucleus ; Osmosis ; osmotic stress ; Signal Transduction ; Stress, Mechanical</subject><ispartof>Annual review of biomedical engineering, 2012-01, Vol.14 (1), p.431-455</ispartof><rights>Copyright © 2012 by Annual Reviews. All rights reserved 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a556t-479c36885aac33cbb570986d256b5f2dcd8e280336d88379af6e36191a8795483</citedby><cites>FETCH-LOGICAL-a556t-479c36885aac33cbb570986d256b5f2dcd8e280336d88379af6e36191a8795483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-bioeng-071910-124638?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-bioeng-071910-124638$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,230,315,782,786,887,4186,27933,27934,78264,78265</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22655599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, Rui P</creatorcontrib><creatorcontrib>Finan, John D</creatorcontrib><creatorcontrib>Farshid, Guilak</creatorcontrib><creatorcontrib>Lee, David A</creatorcontrib><title>Mechanical Regulation of Nuclear Structure and Function</title><title>Annual review of biomedical engineering</title><addtitle>Annu Rev Biomed Eng</addtitle><description>Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.</description><subject>Animals</subject><subject>Biomedical Engineering - methods</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - physiology</subject><subject>Chromatin - metabolism</subject><subject>chromatin organization</subject><subject>Chromosomes - ultrastructure</subject><subject>Cytoplasm - metabolism</subject><subject>Cytoskeleton - metabolism</subject><subject>Extracellular Matrix - metabolism</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>LINC complex</subject><subject>mechanotransduction</subject><subject>Mitosis</subject><subject>Models, Biological</subject><subject>nucleus</subject><subject>Osmosis</subject><subject>osmotic stress</subject><subject>Signal Transduction</subject><subject>Stress, Mechanical</subject><issn>1523-9829</issn><issn>1545-4274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkMtKxDAUhoMoXkZfQbpw4aaaS3MDEWTwBqOCl3U4TdOx0knHpFV8e1s6Drp0lUD-8_0nH0JHBJ8QkolT8L4L7iPNq8b5eYol0QSnhGaCqQ20S3jG04zKbHO4U5ZqRfUO2ovxDWOsGcu20Q6lgnOu9S6Sd86-gq8s1Mmjm3c1tFXjk6ZM7jtbOwjJUxs62_aVCfgiueq8HRL7aKuEOrqD1TlBL1eXz9ObdPZwfTu9mKXAuWjTTGrLhFIcwDJm85xLrJUoKBc5L2lhC-WowoyJQikmNZTCMdH_CJTUPFNsgs5H7rLLF66wzrcBarMM1QLCl2mgMn9ffPVq5s2HYVxyjAfA8QoQmvfOxdYsqmhdXYN3TRcNwVQy2fuSffRsjNrQxBhcua4h2Azuzcq9Gd2b0b0Z3ffjh79XXQ__yO4DF2NgwEDdgyr3Gf9X8g1Clptj</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Martins, Rui P</creator><creator>Finan, John D</creator><creator>Farshid, Guilak</creator><creator>Lee, David A</creator><general>Annual Reviews</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Mechanical Regulation of Nuclear Structure and Function</title><author>Martins, Rui P ; Finan, John D ; Farshid, Guilak ; Lee, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a556t-479c36885aac33cbb570986d256b5f2dcd8e280336d88379af6e36191a8795483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biomedical Engineering - methods</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - physiology</topic><topic>Chromatin - metabolism</topic><topic>chromatin organization</topic><topic>Chromosomes - ultrastructure</topic><topic>Cytoplasm - metabolism</topic><topic>Cytoskeleton - metabolism</topic><topic>Extracellular Matrix - metabolism</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>LINC complex</topic><topic>mechanotransduction</topic><topic>Mitosis</topic><topic>Models, Biological</topic><topic>nucleus</topic><topic>Osmosis</topic><topic>osmotic stress</topic><topic>Signal Transduction</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Rui P</creatorcontrib><creatorcontrib>Finan, John D</creatorcontrib><creatorcontrib>Farshid, Guilak</creatorcontrib><creatorcontrib>Lee, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Rui P</au><au>Finan, John D</au><au>Farshid, Guilak</au><au>Lee, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Regulation of Nuclear Structure and Function</atitle><jtitle>Annual review of biomedical engineering</jtitle><addtitle>Annu Rev Biomed Eng</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>14</volume><issue>1</issue><spage>431</spage><epage>455</epage><pages>431-455</pages><issn>1523-9829</issn><eissn>1545-4274</eissn><abstract>Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>22655599</pmid><doi>10.1146/annurev-bioeng-071910-124638</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1523-9829 |
ispartof | Annual review of biomedical engineering, 2012-01, Vol.14 (1), p.431-455 |
issn | 1523-9829 1545-4274 |
language | eng |
recordid | cdi_pubmed_primary_22655599 |
source | Annual Reviews; MEDLINE |
subjects | Animals Biomedical Engineering - methods Cell Nucleus - metabolism Cell Nucleus - physiology Chromatin - metabolism chromatin organization Chromosomes - ultrastructure Cytoplasm - metabolism Cytoskeleton - metabolism Extracellular Matrix - metabolism Histones - metabolism Humans LINC complex mechanotransduction Mitosis Models, Biological nucleus Osmosis osmotic stress Signal Transduction Stress, Mechanical |
title | Mechanical Regulation of Nuclear Structure and Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T15%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Regulation%20of%20Nuclear%20Structure%20and%20Function&rft.jtitle=Annual%20review%20of%20biomedical%20engineering&rft.au=Martins,%20Rui%20P&rft.date=2012-01-01&rft.volume=14&rft.issue=1&rft.spage=431&rft.epage=455&rft.pages=431-455&rft.issn=1523-9829&rft.eissn=1545-4274&rft_id=info:doi/10.1146/annurev-bioeng-071910-124638&rft_dat=%3Cproquest_pubme%3E1027372747%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027372747&rft_id=info:pmid/22655599&rfr_iscdi=true |