Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing

Covalent attachment of 2,2′-(ethylenedioxy)-diethylamine to multiwalled carbon nanotubes (MWCNTs) produced amino-functionalized MWCNTs which behaved like liquids at ambient temperature. These liquid-like MWCNTs (l-MWCNTs) could be homogeneously dispersed and chemically embedded in an epoxy matrix by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2012-06, Vol.23 (22), p.225701-1-10
Hauptverfasser: Yang, Ying-Kui, Yu, Lin-Juan, Peng, Ren-Gui, Huang, Yuan-Li, He, Cheng-En, Liu, Hong-Yuan, Wang, Xian-Bao, Xie, Xiao-Lin, Mai, Yiu-Wing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covalent attachment of 2,2′-(ethylenedioxy)-diethylamine to multiwalled carbon nanotubes (MWCNTs) produced amino-functionalized MWCNTs which behaved like liquids at ambient temperature. These liquid-like MWCNTs (l-MWCNTs) could be homogeneously dispersed and chemically embedded in an epoxy matrix by solvent-free processing. In contrast, solid MWCNTs (s-MWCNTs) functionalized by 1,8-diaminooctane were poorly dispersed in epoxy although they possess chemical structures and functionalization comparable to l-MWCNTs. An epoxy composite filled with pristine MWCNTs (p-MWCNTs) was also fabricated in the absence of a solvent at the same loading for comparison. The molecular level coupling of l-MWCNTs and epoxy provided significant improvements in overall mechanical properties relative to those composites containing p-MWCNTs and s-MWCNTs. The Young's modulus, storage modulus, tensile strength, failure strain and toughness of neat epoxy were increased by 28.4, 23.8, 22.9, 24.1 and 66.1%, respectively, by adding 0.5 wt% of l-MWCNTs. Thus, functionalized carbon nanotubes in liquid form contributed to better dispersion and superior interfacial bonding with the epoxy matrix, thereby facilitating greater mechanical reinforcement efficiency.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/23/22/225701