Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration

Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2012-06, Vol.367 (1596), p.1757-1769
Hauptverfasser: Cooke, Steven J., Hinch, Scott G., Donaldson, Michael R., Clark, Timothy D., Eliason, Erika J., Crossin, Glenn T., Raby, Graham D., Jeffries, Ken M., Lapointe, Mike, Miller, Kristi, Patterson, David A., Farrell, Anthony P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1769
container_issue 1596
container_start_page 1757
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 367
creator Cooke, Steven J.
Hinch, Scott G.
Donaldson, Michael R.
Clark, Timothy D.
Eliason, Erika J.
Crossin, Glenn T.
Raby, Graham D.
Jeffries, Ken M.
Lapointe, Mike
Miller, Kristi
Patterson, David A.
Farrell, Anthony P.
description Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.
doi_str_mv 10.1098/rstb.2012.0022
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22566681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23250420</jstor_id><sourcerecordid>23250420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-90091b3d725030502aeb260d4baeb5b90fc2f0dd59cb562bbecd8db974c044023</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhSMEYsvClRvIRy4pEzt2Yg5ISwUUaSUQWzhwsWzHbd0mcbCTLuGX8HNxt0uXFQJOtvW-eTPjlySPM5hmwMvnPvRqiiHDUwCM7ySTLC-yFPMC7iYT4AynZU7YSfIghA0AcFrk95MTjCljrMwmyY-Za4PxO9lb16JuPQbrarcakY0vL3VvtXmB1u7yRrNa1mjbusvaVCuD1jIg23Te7UyF3OCRVLa2_Yh6h8IQemlbqeoRNbKVEf8gtV1ajYKsm9ixGrxtV2joUm93xqPGrvzVLA-Te0tZB_Po-jxNPr15vZjN0_P3b9_Nzs5TzRj0KY87ZYpUBaZAgAKWRmEGVa7ihSoOS42XUFWUa0UZVsroqqwUL3INeQ6YnCYvD77doBpTadP2Xtai87aRfhROWnFbae1arNxOEEKBsb3Bs2sD774OJvSisUGbupatcUMQGaUZIxww_T8KGMq4A-YRnR5Q7V0I3iyPE2Ug9smLffJin7zYJx8Lnv6-xxH_FXUEyAHwbowf6rQ1_Sg2MbE2Pv9uu_1X1ceLxasdYYXNKGcCSpIBIwBMfLfdwSqKwoYwGHGF3Lb_s9uTQ7dN6J2_2YHEdHMMUU8Pug29-XbUpd8KVpCCis9lLuZf-ILNL_JY9hOu6fwv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020850229</pqid></control><display><type>article</type><title>Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Cooke, Steven J. ; Hinch, Scott G. ; Donaldson, Michael R. ; Clark, Timothy D. ; Eliason, Erika J. ; Crossin, Glenn T. ; Raby, Graham D. ; Jeffries, Ken M. ; Lapointe, Mike ; Miller, Kristi ; Patterson, David A. ; Farrell, Anthony P.</creator><creatorcontrib>Cooke, Steven J. ; Hinch, Scott G. ; Donaldson, Michael R. ; Clark, Timothy D. ; Eliason, Erika J. ; Crossin, Glenn T. ; Raby, Graham D. ; Jeffries, Ken M. ; Lapointe, Mike ; Miller, Kristi ; Patterson, David A. ; Farrell, Anthony P.</creatorcontrib><description>Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2012.0022</identifier><identifier>PMID: 22566681</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adaptation, Physiological ; Animal Migration - physiology ; Animal migration behavior ; Animals ; Climate Change ; Conservation biology ; Conservation of Natural Resources ; Conservation Physiology ; Environmental conservation ; Field Physiology ; Fisheries - methods ; Fisheries Management ; Fisheries science ; Genomics ; Genomics - methods ; Heart - physiology ; Marine ; Mortality ; Ocean fisheries ; Physiology ; Respiratory Physiological Phenomena ; Rivers ; Salmon ; Salmon - genetics ; Salmon - physiology ; Salmonidae ; Survival Analysis ; Telemetry ; Temperature</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2012-06, Vol.367 (1596), p.1757-1769</ispartof><rights>Copyright © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-90091b3d725030502aeb260d4baeb5b90fc2f0dd59cb562bbecd8db974c044023</citedby><cites>FETCH-LOGICAL-c660t-90091b3d725030502aeb260d4baeb5b90fc2f0dd59cb562bbecd8db974c044023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23250420$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23250420$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22566681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooke, Steven J.</creatorcontrib><creatorcontrib>Hinch, Scott G.</creatorcontrib><creatorcontrib>Donaldson, Michael R.</creatorcontrib><creatorcontrib>Clark, Timothy D.</creatorcontrib><creatorcontrib>Eliason, Erika J.</creatorcontrib><creatorcontrib>Crossin, Glenn T.</creatorcontrib><creatorcontrib>Raby, Graham D.</creatorcontrib><creatorcontrib>Jeffries, Ken M.</creatorcontrib><creatorcontrib>Lapointe, Mike</creatorcontrib><creatorcontrib>Miller, Kristi</creatorcontrib><creatorcontrib>Patterson, David A.</creatorcontrib><creatorcontrib>Farrell, Anthony P.</creatorcontrib><title>Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. B</addtitle><addtitle>Phil. Trans. R. Soc. B</addtitle><description>Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.</description><subject>Adaptation, Physiological</subject><subject>Animal Migration - physiology</subject><subject>Animal migration behavior</subject><subject>Animals</subject><subject>Climate Change</subject><subject>Conservation biology</subject><subject>Conservation of Natural Resources</subject><subject>Conservation Physiology</subject><subject>Environmental conservation</subject><subject>Field Physiology</subject><subject>Fisheries - methods</subject><subject>Fisheries Management</subject><subject>Fisheries science</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Heart - physiology</subject><subject>Marine</subject><subject>Mortality</subject><subject>Ocean fisheries</subject><subject>Physiology</subject><subject>Respiratory Physiological Phenomena</subject><subject>Rivers</subject><subject>Salmon</subject><subject>Salmon - genetics</subject><subject>Salmon - physiology</subject><subject>Salmonidae</subject><subject>Survival Analysis</subject><subject>Telemetry</subject><subject>Temperature</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUGP0zAQhSMEYsvClRvIRy4pEzt2Yg5ISwUUaSUQWzhwsWzHbd0mcbCTLuGX8HNxt0uXFQJOtvW-eTPjlySPM5hmwMvnPvRqiiHDUwCM7ySTLC-yFPMC7iYT4AynZU7YSfIghA0AcFrk95MTjCljrMwmyY-Za4PxO9lb16JuPQbrarcakY0vL3VvtXmB1u7yRrNa1mjbusvaVCuD1jIg23Te7UyF3OCRVLa2_Yh6h8IQemlbqeoRNbKVEf8gtV1ajYKsm9ixGrxtV2joUm93xqPGrvzVLA-Te0tZB_Po-jxNPr15vZjN0_P3b9_Nzs5TzRj0KY87ZYpUBaZAgAKWRmEGVa7ihSoOS42XUFWUa0UZVsroqqwUL3INeQ6YnCYvD77doBpTadP2Xtai87aRfhROWnFbae1arNxOEEKBsb3Bs2sD774OJvSisUGbupatcUMQGaUZIxww_T8KGMq4A-YRnR5Q7V0I3iyPE2Ug9smLffJin7zYJx8Lnv6-xxH_FXUEyAHwbowf6rQ1_Sg2MbE2Pv9uu_1X1ceLxasdYYXNKGcCSpIBIwBMfLfdwSqKwoYwGHGF3Lb_s9uTQ7dN6J2_2YHEdHMMUU8Pug29-XbUpd8KVpCCis9lLuZf-ILNL_JY9hOu6fwv</recordid><startdate>20120619</startdate><enddate>20120619</enddate><creator>Cooke, Steven J.</creator><creator>Hinch, Scott G.</creator><creator>Donaldson, Michael R.</creator><creator>Clark, Timothy D.</creator><creator>Eliason, Erika J.</creator><creator>Crossin, Glenn T.</creator><creator>Raby, Graham D.</creator><creator>Jeffries, Ken M.</creator><creator>Lapointe, Mike</creator><creator>Miller, Kristi</creator><creator>Patterson, David A.</creator><creator>Farrell, Anthony P.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20120619</creationdate><title>Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration</title><author>Cooke, Steven J. ; Hinch, Scott G. ; Donaldson, Michael R. ; Clark, Timothy D. ; Eliason, Erika J. ; Crossin, Glenn T. ; Raby, Graham D. ; Jeffries, Ken M. ; Lapointe, Mike ; Miller, Kristi ; Patterson, David A. ; Farrell, Anthony P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-90091b3d725030502aeb260d4baeb5b90fc2f0dd59cb562bbecd8db974c044023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological</topic><topic>Animal Migration - physiology</topic><topic>Animal migration behavior</topic><topic>Animals</topic><topic>Climate Change</topic><topic>Conservation biology</topic><topic>Conservation of Natural Resources</topic><topic>Conservation Physiology</topic><topic>Environmental conservation</topic><topic>Field Physiology</topic><topic>Fisheries - methods</topic><topic>Fisheries Management</topic><topic>Fisheries science</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Heart - physiology</topic><topic>Marine</topic><topic>Mortality</topic><topic>Ocean fisheries</topic><topic>Physiology</topic><topic>Respiratory Physiological Phenomena</topic><topic>Rivers</topic><topic>Salmon</topic><topic>Salmon - genetics</topic><topic>Salmon - physiology</topic><topic>Salmonidae</topic><topic>Survival Analysis</topic><topic>Telemetry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooke, Steven J.</creatorcontrib><creatorcontrib>Hinch, Scott G.</creatorcontrib><creatorcontrib>Donaldson, Michael R.</creatorcontrib><creatorcontrib>Clark, Timothy D.</creatorcontrib><creatorcontrib>Eliason, Erika J.</creatorcontrib><creatorcontrib>Crossin, Glenn T.</creatorcontrib><creatorcontrib>Raby, Graham D.</creatorcontrib><creatorcontrib>Jeffries, Ken M.</creatorcontrib><creatorcontrib>Lapointe, Mike</creatorcontrib><creatorcontrib>Miller, Kristi</creatorcontrib><creatorcontrib>Patterson, David A.</creatorcontrib><creatorcontrib>Farrell, Anthony P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooke, Steven J.</au><au>Hinch, Scott G.</au><au>Donaldson, Michael R.</au><au>Clark, Timothy D.</au><au>Eliason, Erika J.</au><au>Crossin, Glenn T.</au><au>Raby, Graham D.</au><au>Jeffries, Ken M.</au><au>Lapointe, Mike</au><au>Miller, Kristi</au><au>Patterson, David A.</au><au>Farrell, Anthony P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. B</stitle><addtitle>Phil. Trans. R. Soc. B</addtitle><date>2012-06-19</date><risdate>2012</risdate><volume>367</volume><issue>1596</issue><spage>1757</spage><epage>1769</epage><pages>1757-1769</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>22566681</pmid><doi>10.1098/rstb.2012.0022</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2012-06, Vol.367 (1596), p.1757-1769
issn 0962-8436
1471-2970
language eng
recordid cdi_pubmed_primary_22566681
source Jstor Complete Legacy; MEDLINE; PubMed Central
subjects Adaptation, Physiological
Animal Migration - physiology
Animal migration behavior
Animals
Climate Change
Conservation biology
Conservation of Natural Resources
Conservation Physiology
Environmental conservation
Field Physiology
Fisheries - methods
Fisheries Management
Fisheries science
Genomics
Genomics - methods
Heart - physiology
Marine
Mortality
Ocean fisheries
Physiology
Respiratory Physiological Phenomena
Rivers
Salmon
Salmon - genetics
Salmon - physiology
Salmonidae
Survival Analysis
Telemetry
Temperature
title Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20physiology%20in%20practice:%20how%20physiological%20knowledge%20has%20improved%20our%20ability%20to%20sustainably%20manage%20Pacific%20salmon%20during%20up-river%20migration&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Cooke,%20Steven%20J.&rft.date=2012-06-19&rft.volume=367&rft.issue=1596&rft.spage=1757&rft.epage=1769&rft.pages=1757-1769&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2012.0022&rft_dat=%3Cjstor_pubme%3E23250420%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020850229&rft_id=info:pmid/22566681&rft_jstor_id=23250420&rfr_iscdi=true