Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration
Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation con...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2012-06, Vol.367 (1596), p.1757-1769 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1769 |
---|---|
container_issue | 1596 |
container_start_page | 1757 |
container_title | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
container_volume | 367 |
creator | Cooke, Steven J. Hinch, Scott G. Donaldson, Michael R. Clark, Timothy D. Eliason, Erika J. Crossin, Glenn T. Raby, Graham D. Jeffries, Ken M. Lapointe, Mike Miller, Kristi Patterson, David A. Farrell, Anthony P. |
description | Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon. |
doi_str_mv | 10.1098/rstb.2012.0022 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22566681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23250420</jstor_id><sourcerecordid>23250420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-90091b3d725030502aeb260d4baeb5b90fc2f0dd59cb562bbecd8db974c044023</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhSMEYsvClRvIRy4pEzt2Yg5ISwUUaSUQWzhwsWzHbd0mcbCTLuGX8HNxt0uXFQJOtvW-eTPjlySPM5hmwMvnPvRqiiHDUwCM7ySTLC-yFPMC7iYT4AynZU7YSfIghA0AcFrk95MTjCljrMwmyY-Za4PxO9lb16JuPQbrarcakY0vL3VvtXmB1u7yRrNa1mjbusvaVCuD1jIg23Te7UyF3OCRVLa2_Yh6h8IQemlbqeoRNbKVEf8gtV1ajYKsm9ixGrxtV2joUm93xqPGrvzVLA-Te0tZB_Po-jxNPr15vZjN0_P3b9_Nzs5TzRj0KY87ZYpUBaZAgAKWRmEGVa7ihSoOS42XUFWUa0UZVsroqqwUL3INeQ6YnCYvD77doBpTadP2Xtai87aRfhROWnFbae1arNxOEEKBsb3Bs2sD774OJvSisUGbupatcUMQGaUZIxww_T8KGMq4A-YRnR5Q7V0I3iyPE2Ug9smLffJin7zYJx8Lnv6-xxH_FXUEyAHwbowf6rQ1_Sg2MbE2Pv9uu_1X1ceLxasdYYXNKGcCSpIBIwBMfLfdwSqKwoYwGHGF3Lb_s9uTQ7dN6J2_2YHEdHMMUU8Pug29-XbUpd8KVpCCis9lLuZf-ILNL_JY9hOu6fwv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020850229</pqid></control><display><type>article</type><title>Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Cooke, Steven J. ; Hinch, Scott G. ; Donaldson, Michael R. ; Clark, Timothy D. ; Eliason, Erika J. ; Crossin, Glenn T. ; Raby, Graham D. ; Jeffries, Ken M. ; Lapointe, Mike ; Miller, Kristi ; Patterson, David A. ; Farrell, Anthony P.</creator><creatorcontrib>Cooke, Steven J. ; Hinch, Scott G. ; Donaldson, Michael R. ; Clark, Timothy D. ; Eliason, Erika J. ; Crossin, Glenn T. ; Raby, Graham D. ; Jeffries, Ken M. ; Lapointe, Mike ; Miller, Kristi ; Patterson, David A. ; Farrell, Anthony P.</creatorcontrib><description>Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2012.0022</identifier><identifier>PMID: 22566681</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adaptation, Physiological ; Animal Migration - physiology ; Animal migration behavior ; Animals ; Climate Change ; Conservation biology ; Conservation of Natural Resources ; Conservation Physiology ; Environmental conservation ; Field Physiology ; Fisheries - methods ; Fisheries Management ; Fisheries science ; Genomics ; Genomics - methods ; Heart - physiology ; Marine ; Mortality ; Ocean fisheries ; Physiology ; Respiratory Physiological Phenomena ; Rivers ; Salmon ; Salmon - genetics ; Salmon - physiology ; Salmonidae ; Survival Analysis ; Telemetry ; Temperature</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2012-06, Vol.367 (1596), p.1757-1769</ispartof><rights>Copyright © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-90091b3d725030502aeb260d4baeb5b90fc2f0dd59cb562bbecd8db974c044023</citedby><cites>FETCH-LOGICAL-c660t-90091b3d725030502aeb260d4baeb5b90fc2f0dd59cb562bbecd8db974c044023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23250420$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23250420$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22566681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooke, Steven J.</creatorcontrib><creatorcontrib>Hinch, Scott G.</creatorcontrib><creatorcontrib>Donaldson, Michael R.</creatorcontrib><creatorcontrib>Clark, Timothy D.</creatorcontrib><creatorcontrib>Eliason, Erika J.</creatorcontrib><creatorcontrib>Crossin, Glenn T.</creatorcontrib><creatorcontrib>Raby, Graham D.</creatorcontrib><creatorcontrib>Jeffries, Ken M.</creatorcontrib><creatorcontrib>Lapointe, Mike</creatorcontrib><creatorcontrib>Miller, Kristi</creatorcontrib><creatorcontrib>Patterson, David A.</creatorcontrib><creatorcontrib>Farrell, Anthony P.</creatorcontrib><title>Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. B</addtitle><addtitle>Phil. Trans. R. Soc. B</addtitle><description>Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.</description><subject>Adaptation, Physiological</subject><subject>Animal Migration - physiology</subject><subject>Animal migration behavior</subject><subject>Animals</subject><subject>Climate Change</subject><subject>Conservation biology</subject><subject>Conservation of Natural Resources</subject><subject>Conservation Physiology</subject><subject>Environmental conservation</subject><subject>Field Physiology</subject><subject>Fisheries - methods</subject><subject>Fisheries Management</subject><subject>Fisheries science</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Heart - physiology</subject><subject>Marine</subject><subject>Mortality</subject><subject>Ocean fisheries</subject><subject>Physiology</subject><subject>Respiratory Physiological Phenomena</subject><subject>Rivers</subject><subject>Salmon</subject><subject>Salmon - genetics</subject><subject>Salmon - physiology</subject><subject>Salmonidae</subject><subject>Survival Analysis</subject><subject>Telemetry</subject><subject>Temperature</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUGP0zAQhSMEYsvClRvIRy4pEzt2Yg5ISwUUaSUQWzhwsWzHbd0mcbCTLuGX8HNxt0uXFQJOtvW-eTPjlySPM5hmwMvnPvRqiiHDUwCM7ySTLC-yFPMC7iYT4AynZU7YSfIghA0AcFrk95MTjCljrMwmyY-Za4PxO9lb16JuPQbrarcakY0vL3VvtXmB1u7yRrNa1mjbusvaVCuD1jIg23Te7UyF3OCRVLa2_Yh6h8IQemlbqeoRNbKVEf8gtV1ajYKsm9ixGrxtV2joUm93xqPGrvzVLA-Te0tZB_Po-jxNPr15vZjN0_P3b9_Nzs5TzRj0KY87ZYpUBaZAgAKWRmEGVa7ihSoOS42XUFWUa0UZVsroqqwUL3INeQ6YnCYvD77doBpTadP2Xtai87aRfhROWnFbae1arNxOEEKBsb3Bs2sD774OJvSisUGbupatcUMQGaUZIxww_T8KGMq4A-YRnR5Q7V0I3iyPE2Ug9smLffJin7zYJx8Lnv6-xxH_FXUEyAHwbowf6rQ1_Sg2MbE2Pv9uu_1X1ceLxasdYYXNKGcCSpIBIwBMfLfdwSqKwoYwGHGF3Lb_s9uTQ7dN6J2_2YHEdHMMUU8Pug29-XbUpd8KVpCCis9lLuZf-ILNL_JY9hOu6fwv</recordid><startdate>20120619</startdate><enddate>20120619</enddate><creator>Cooke, Steven J.</creator><creator>Hinch, Scott G.</creator><creator>Donaldson, Michael R.</creator><creator>Clark, Timothy D.</creator><creator>Eliason, Erika J.</creator><creator>Crossin, Glenn T.</creator><creator>Raby, Graham D.</creator><creator>Jeffries, Ken M.</creator><creator>Lapointe, Mike</creator><creator>Miller, Kristi</creator><creator>Patterson, David A.</creator><creator>Farrell, Anthony P.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20120619</creationdate><title>Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration</title><author>Cooke, Steven J. ; Hinch, Scott G. ; Donaldson, Michael R. ; Clark, Timothy D. ; Eliason, Erika J. ; Crossin, Glenn T. ; Raby, Graham D. ; Jeffries, Ken M. ; Lapointe, Mike ; Miller, Kristi ; Patterson, David A. ; Farrell, Anthony P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-90091b3d725030502aeb260d4baeb5b90fc2f0dd59cb562bbecd8db974c044023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological</topic><topic>Animal Migration - physiology</topic><topic>Animal migration behavior</topic><topic>Animals</topic><topic>Climate Change</topic><topic>Conservation biology</topic><topic>Conservation of Natural Resources</topic><topic>Conservation Physiology</topic><topic>Environmental conservation</topic><topic>Field Physiology</topic><topic>Fisheries - methods</topic><topic>Fisheries Management</topic><topic>Fisheries science</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Heart - physiology</topic><topic>Marine</topic><topic>Mortality</topic><topic>Ocean fisheries</topic><topic>Physiology</topic><topic>Respiratory Physiological Phenomena</topic><topic>Rivers</topic><topic>Salmon</topic><topic>Salmon - genetics</topic><topic>Salmon - physiology</topic><topic>Salmonidae</topic><topic>Survival Analysis</topic><topic>Telemetry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooke, Steven J.</creatorcontrib><creatorcontrib>Hinch, Scott G.</creatorcontrib><creatorcontrib>Donaldson, Michael R.</creatorcontrib><creatorcontrib>Clark, Timothy D.</creatorcontrib><creatorcontrib>Eliason, Erika J.</creatorcontrib><creatorcontrib>Crossin, Glenn T.</creatorcontrib><creatorcontrib>Raby, Graham D.</creatorcontrib><creatorcontrib>Jeffries, Ken M.</creatorcontrib><creatorcontrib>Lapointe, Mike</creatorcontrib><creatorcontrib>Miller, Kristi</creatorcontrib><creatorcontrib>Patterson, David A.</creatorcontrib><creatorcontrib>Farrell, Anthony P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooke, Steven J.</au><au>Hinch, Scott G.</au><au>Donaldson, Michael R.</au><au>Clark, Timothy D.</au><au>Eliason, Erika J.</au><au>Crossin, Glenn T.</au><au>Raby, Graham D.</au><au>Jeffries, Ken M.</au><au>Lapointe, Mike</au><au>Miller, Kristi</au><au>Patterson, David A.</au><au>Farrell, Anthony P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. B</stitle><addtitle>Phil. Trans. R. Soc. B</addtitle><date>2012-06-19</date><risdate>2012</risdate><volume>367</volume><issue>1596</issue><spage>1757</spage><epage>1769</epage><pages>1757-1769</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>22566681</pmid><doi>10.1098/rstb.2012.0022</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2012-06, Vol.367 (1596), p.1757-1769 |
issn | 0962-8436 1471-2970 |
language | eng |
recordid | cdi_pubmed_primary_22566681 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central |
subjects | Adaptation, Physiological Animal Migration - physiology Animal migration behavior Animals Climate Change Conservation biology Conservation of Natural Resources Conservation Physiology Environmental conservation Field Physiology Fisheries - methods Fisheries Management Fisheries science Genomics Genomics - methods Heart - physiology Marine Mortality Ocean fisheries Physiology Respiratory Physiological Phenomena Rivers Salmon Salmon - genetics Salmon - physiology Salmonidae Survival Analysis Telemetry Temperature |
title | Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20physiology%20in%20practice:%20how%20physiological%20knowledge%20has%20improved%20our%20ability%20to%20sustainably%20manage%20Pacific%20salmon%20during%20up-river%20migration&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Cooke,%20Steven%20J.&rft.date=2012-06-19&rft.volume=367&rft.issue=1596&rft.spage=1757&rft.epage=1769&rft.pages=1757-1769&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2012.0022&rft_dat=%3Cjstor_pubme%3E23250420%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020850229&rft_id=info:pmid/22566681&rft_jstor_id=23250420&rfr_iscdi=true |