Computational adaptive optics for broadband optical interferometric tomography of biological tissue

Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-05, Vol.109 (19), p.7175-7180
Hauptverfasser: Adie, Steven G., Graf, Benedikt W., Ahmad, Adeel, Carney, P. Scott, Boppart, Stephen A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7180
container_issue 19
container_start_page 7175
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Adie, Steven G.
Graf, Benedikt W.
Ahmad, Adeel
Carney, P. Scott
Boppart, Stephen A.
description Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.
doi_str_mv 10.1073/pnas.1121193109
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_pubmed_primary_22538815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41592987</jstor_id><sourcerecordid>41592987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgehSOHMCIvXCZduxHX9dKqFV-ZAqcYGz5Tj21qskDrZTqf-ehCxb4MLFI9nPvLI9CL3GcIlB0KtxMPkSY4KxohjUE7SZV7zltYKnaANAxFbWpD5DL3I-AIBiEp6jM0IYlRKzDbK72I9TMSXEwXSVac1Ywr2r4lxsrnxMVZOiaRsztOvmrMJQXPIuxd6VFGxVYh_3yYx3D1X0VRNiF_e_YAk5T-4leuZNl92rYz1H3z_efNt93t5-_fRl9-F2axnnZUu5rQ2xjRdCWCaFqyl2IGsrRMu5kRQcN0wo6rGRhtDGe-INkY5SQYA4eo6u19xxanrXWjeUZDo9ptCb9KCjCfrvkyHc6X2815QyKQWZA94fA1L8MblcdB-ydV1nBhenrHFdcyIUUPZ_CpgQkILxmV78Qw9xSvNvrwoUF7Coq1XZFHNOzp_ujUEvs9bLrPXjrOeOt38-9-R_D3cG745g6XyMUxorLbBYxJtVHHKJ6URqzBRRUtCfI7S6_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012096706</pqid></control><display><type>article</type><title>Computational adaptive optics for broadband optical interferometric tomography of biological tissue</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Adie, Steven G. ; Graf, Benedikt W. ; Ahmad, Adeel ; Carney, P. Scott ; Boppart, Stephen A.</creator><creatorcontrib>Adie, Steven G. ; Graf, Benedikt W. ; Ahmad, Adeel ; Carney, P. Scott ; Boppart, Stephen A.</creatorcontrib><description>Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1121193109</identifier><identifier>PMID: 22538815</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptive optics ; Algorithms ; animal tissues ; Animals ; Biological Sciences ; Broadband transmission ; data collection ; Fiber optic interferometers ; Fourier transformations ; image analysis ; Image Processing, Computer-Assisted - instrumentation ; Image Processing, Computer-Assisted - methods ; Imaging ; Imaging, Three-Dimensional - instrumentation ; Imaging, Three-Dimensional - methods ; Lung - anatomy &amp; histology ; Lungs ; Microscopy ; Microscopy, Interference - instrumentation ; Microscopy, Interference - methods ; Optical coherence tomography ; Optical focus ; Optics ; Phantoms, Imaging ; Physical Sciences ; Rats ; Reproducibility of Results ; Rodents ; Supernova remnants ; Tissues ; Tomography ; Tomography, Optical Coherence - instrumentation ; Tomography, Optical Coherence - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (19), p.7175-7180</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 8, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3</citedby><cites>FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41592987$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41592987$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22538815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adie, Steven G.</creatorcontrib><creatorcontrib>Graf, Benedikt W.</creatorcontrib><creatorcontrib>Ahmad, Adeel</creatorcontrib><creatorcontrib>Carney, P. Scott</creatorcontrib><creatorcontrib>Boppart, Stephen A.</creatorcontrib><title>Computational adaptive optics for broadband optical interferometric tomography of biological tissue</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.</description><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>animal tissues</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Broadband transmission</subject><subject>data collection</subject><subject>Fiber optic interferometers</subject><subject>Fourier transformations</subject><subject>image analysis</subject><subject>Image Processing, Computer-Assisted - instrumentation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - instrumentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Lung - anatomy &amp; histology</subject><subject>Lungs</subject><subject>Microscopy</subject><subject>Microscopy, Interference - instrumentation</subject><subject>Microscopy, Interference - methods</subject><subject>Optical coherence tomography</subject><subject>Optical focus</subject><subject>Optics</subject><subject>Phantoms, Imaging</subject><subject>Physical Sciences</subject><subject>Rats</subject><subject>Reproducibility of Results</subject><subject>Rodents</subject><subject>Supernova remnants</subject><subject>Tissues</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence - instrumentation</subject><subject>Tomography, Optical Coherence - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmALgehSOHMCIvXCZduxHX9dKqFV-ZAqcYGz5Tj21qskDrZTqf-ehCxb4MLFI9nPvLI9CL3GcIlB0KtxMPkSY4KxohjUE7SZV7zltYKnaANAxFbWpD5DL3I-AIBiEp6jM0IYlRKzDbK72I9TMSXEwXSVac1Ywr2r4lxsrnxMVZOiaRsztOvmrMJQXPIuxd6VFGxVYh_3yYx3D1X0VRNiF_e_YAk5T-4leuZNl92rYz1H3z_efNt93t5-_fRl9-F2axnnZUu5rQ2xjRdCWCaFqyl2IGsrRMu5kRQcN0wo6rGRhtDGe-INkY5SQYA4eo6u19xxanrXWjeUZDo9ptCb9KCjCfrvkyHc6X2815QyKQWZA94fA1L8MblcdB-ydV1nBhenrHFdcyIUUPZ_CpgQkILxmV78Qw9xSvNvrwoUF7Coq1XZFHNOzp_ujUEvs9bLrPXjrOeOt38-9-R_D3cG745g6XyMUxorLbBYxJtVHHKJ6URqzBRRUtCfI7S6_Q</recordid><startdate>20120508</startdate><enddate>20120508</enddate><creator>Adie, Steven G.</creator><creator>Graf, Benedikt W.</creator><creator>Ahmad, Adeel</creator><creator>Carney, P. Scott</creator><creator>Boppart, Stephen A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120508</creationdate><title>Computational adaptive optics for broadband optical interferometric tomography of biological tissue</title><author>Adie, Steven G. ; Graf, Benedikt W. ; Ahmad, Adeel ; Carney, P. Scott ; Boppart, Stephen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>animal tissues</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Broadband transmission</topic><topic>data collection</topic><topic>Fiber optic interferometers</topic><topic>Fourier transformations</topic><topic>image analysis</topic><topic>Image Processing, Computer-Assisted - instrumentation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - instrumentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Lung - anatomy &amp; histology</topic><topic>Lungs</topic><topic>Microscopy</topic><topic>Microscopy, Interference - instrumentation</topic><topic>Microscopy, Interference - methods</topic><topic>Optical coherence tomography</topic><topic>Optical focus</topic><topic>Optics</topic><topic>Phantoms, Imaging</topic><topic>Physical Sciences</topic><topic>Rats</topic><topic>Reproducibility of Results</topic><topic>Rodents</topic><topic>Supernova remnants</topic><topic>Tissues</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence - instrumentation</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adie, Steven G.</creatorcontrib><creatorcontrib>Graf, Benedikt W.</creatorcontrib><creatorcontrib>Ahmad, Adeel</creatorcontrib><creatorcontrib>Carney, P. Scott</creatorcontrib><creatorcontrib>Boppart, Stephen A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adie, Steven G.</au><au>Graf, Benedikt W.</au><au>Ahmad, Adeel</au><au>Carney, P. Scott</au><au>Boppart, Stephen A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational adaptive optics for broadband optical interferometric tomography of biological tissue</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-05-08</date><risdate>2012</risdate><volume>109</volume><issue>19</issue><spage>7175</spage><epage>7180</epage><pages>7175-7180</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22538815</pmid><doi>10.1073/pnas.1121193109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (19), p.7175-7180
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_22538815
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptive optics
Algorithms
animal tissues
Animals
Biological Sciences
Broadband transmission
data collection
Fiber optic interferometers
Fourier transformations
image analysis
Image Processing, Computer-Assisted - instrumentation
Image Processing, Computer-Assisted - methods
Imaging
Imaging, Three-Dimensional - instrumentation
Imaging, Three-Dimensional - methods
Lung - anatomy & histology
Lungs
Microscopy
Microscopy, Interference - instrumentation
Microscopy, Interference - methods
Optical coherence tomography
Optical focus
Optics
Phantoms, Imaging
Physical Sciences
Rats
Reproducibility of Results
Rodents
Supernova remnants
Tissues
Tomography
Tomography, Optical Coherence - instrumentation
Tomography, Optical Coherence - methods
title Computational adaptive optics for broadband optical interferometric tomography of biological tissue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20adaptive%20optics%20for%20broadband%20optical%20interferometric%20tomography%20of%20biological%20tissue&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Adie,%20Steven%20G.&rft.date=2012-05-08&rft.volume=109&rft.issue=19&rft.spage=7175&rft.epage=7180&rft.pages=7175-7180&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1121193109&rft_dat=%3Cjstor_proqu%3E41592987%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1012096706&rft_id=info:pmid/22538815&rft_jstor_id=41592987&rfr_iscdi=true