Computational adaptive optics for broadband optical interferometric tomography of biological tissue
Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-05, Vol.109 (19), p.7175-7180 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7180 |
---|---|
container_issue | 19 |
container_start_page | 7175 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Adie, Steven G. Graf, Benedikt W. Ahmad, Adeel Carney, P. Scott Boppart, Stephen A. |
description | Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists. |
doi_str_mv | 10.1073/pnas.1121193109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_pubmed_primary_22538815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41592987</jstor_id><sourcerecordid>41592987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgehSOHMCIvXCZduxHX9dKqFV-ZAqcYGz5Tj21qskDrZTqf-ehCxb4MLFI9nPvLI9CL3GcIlB0KtxMPkSY4KxohjUE7SZV7zltYKnaANAxFbWpD5DL3I-AIBiEp6jM0IYlRKzDbK72I9TMSXEwXSVac1Ywr2r4lxsrnxMVZOiaRsztOvmrMJQXPIuxd6VFGxVYh_3yYx3D1X0VRNiF_e_YAk5T-4leuZNl92rYz1H3z_efNt93t5-_fRl9-F2axnnZUu5rQ2xjRdCWCaFqyl2IGsrRMu5kRQcN0wo6rGRhtDGe-INkY5SQYA4eo6u19xxanrXWjeUZDo9ptCb9KCjCfrvkyHc6X2815QyKQWZA94fA1L8MblcdB-ydV1nBhenrHFdcyIUUPZ_CpgQkILxmV78Qw9xSvNvrwoUF7Coq1XZFHNOzp_ujUEvs9bLrPXjrOeOt38-9-R_D3cG745g6XyMUxorLbBYxJtVHHKJ6URqzBRRUtCfI7S6_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012096706</pqid></control><display><type>article</type><title>Computational adaptive optics for broadband optical interferometric tomography of biological tissue</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Adie, Steven G. ; Graf, Benedikt W. ; Ahmad, Adeel ; Carney, P. Scott ; Boppart, Stephen A.</creator><creatorcontrib>Adie, Steven G. ; Graf, Benedikt W. ; Ahmad, Adeel ; Carney, P. Scott ; Boppart, Stephen A.</creatorcontrib><description>Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1121193109</identifier><identifier>PMID: 22538815</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptive optics ; Algorithms ; animal tissues ; Animals ; Biological Sciences ; Broadband transmission ; data collection ; Fiber optic interferometers ; Fourier transformations ; image analysis ; Image Processing, Computer-Assisted - instrumentation ; Image Processing, Computer-Assisted - methods ; Imaging ; Imaging, Three-Dimensional - instrumentation ; Imaging, Three-Dimensional - methods ; Lung - anatomy & histology ; Lungs ; Microscopy ; Microscopy, Interference - instrumentation ; Microscopy, Interference - methods ; Optical coherence tomography ; Optical focus ; Optics ; Phantoms, Imaging ; Physical Sciences ; Rats ; Reproducibility of Results ; Rodents ; Supernova remnants ; Tissues ; Tomography ; Tomography, Optical Coherence - instrumentation ; Tomography, Optical Coherence - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (19), p.7175-7180</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 8, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3</citedby><cites>FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41592987$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41592987$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22538815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adie, Steven G.</creatorcontrib><creatorcontrib>Graf, Benedikt W.</creatorcontrib><creatorcontrib>Ahmad, Adeel</creatorcontrib><creatorcontrib>Carney, P. Scott</creatorcontrib><creatorcontrib>Boppart, Stephen A.</creatorcontrib><title>Computational adaptive optics for broadband optical interferometric tomography of biological tissue</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.</description><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>animal tissues</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Broadband transmission</subject><subject>data collection</subject><subject>Fiber optic interferometers</subject><subject>Fourier transformations</subject><subject>image analysis</subject><subject>Image Processing, Computer-Assisted - instrumentation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - instrumentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Lung - anatomy & histology</subject><subject>Lungs</subject><subject>Microscopy</subject><subject>Microscopy, Interference - instrumentation</subject><subject>Microscopy, Interference - methods</subject><subject>Optical coherence tomography</subject><subject>Optical focus</subject><subject>Optics</subject><subject>Phantoms, Imaging</subject><subject>Physical Sciences</subject><subject>Rats</subject><subject>Reproducibility of Results</subject><subject>Rodents</subject><subject>Supernova remnants</subject><subject>Tissues</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence - instrumentation</subject><subject>Tomography, Optical Coherence - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmALgehSOHMCIvXCZduxHX9dKqFV-ZAqcYGz5Tj21qskDrZTqf-ehCxb4MLFI9nPvLI9CL3GcIlB0KtxMPkSY4KxohjUE7SZV7zltYKnaANAxFbWpD5DL3I-AIBiEp6jM0IYlRKzDbK72I9TMSXEwXSVac1Ywr2r4lxsrnxMVZOiaRsztOvmrMJQXPIuxd6VFGxVYh_3yYx3D1X0VRNiF_e_YAk5T-4leuZNl92rYz1H3z_efNt93t5-_fRl9-F2axnnZUu5rQ2xjRdCWCaFqyl2IGsrRMu5kRQcN0wo6rGRhtDGe-INkY5SQYA4eo6u19xxanrXWjeUZDo9ptCb9KCjCfrvkyHc6X2815QyKQWZA94fA1L8MblcdB-ydV1nBhenrHFdcyIUUPZ_CpgQkILxmV78Qw9xSvNvrwoUF7Coq1XZFHNOzp_ujUEvs9bLrPXjrOeOt38-9-R_D3cG745g6XyMUxorLbBYxJtVHHKJ6URqzBRRUtCfI7S6_Q</recordid><startdate>20120508</startdate><enddate>20120508</enddate><creator>Adie, Steven G.</creator><creator>Graf, Benedikt W.</creator><creator>Ahmad, Adeel</creator><creator>Carney, P. Scott</creator><creator>Boppart, Stephen A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120508</creationdate><title>Computational adaptive optics for broadband optical interferometric tomography of biological tissue</title><author>Adie, Steven G. ; Graf, Benedikt W. ; Ahmad, Adeel ; Carney, P. Scott ; Boppart, Stephen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-36c4a2cbf777c587e431e084c77d66a830e6a5793f1a8a23bff2fa28e337202e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>animal tissues</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Broadband transmission</topic><topic>data collection</topic><topic>Fiber optic interferometers</topic><topic>Fourier transformations</topic><topic>image analysis</topic><topic>Image Processing, Computer-Assisted - instrumentation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - instrumentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Lung - anatomy & histology</topic><topic>Lungs</topic><topic>Microscopy</topic><topic>Microscopy, Interference - instrumentation</topic><topic>Microscopy, Interference - methods</topic><topic>Optical coherence tomography</topic><topic>Optical focus</topic><topic>Optics</topic><topic>Phantoms, Imaging</topic><topic>Physical Sciences</topic><topic>Rats</topic><topic>Reproducibility of Results</topic><topic>Rodents</topic><topic>Supernova remnants</topic><topic>Tissues</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence - instrumentation</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adie, Steven G.</creatorcontrib><creatorcontrib>Graf, Benedikt W.</creatorcontrib><creatorcontrib>Ahmad, Adeel</creatorcontrib><creatorcontrib>Carney, P. Scott</creatorcontrib><creatorcontrib>Boppart, Stephen A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adie, Steven G.</au><au>Graf, Benedikt W.</au><au>Ahmad, Adeel</au><au>Carney, P. Scott</au><au>Boppart, Stephen A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational adaptive optics for broadband optical interferometric tomography of biological tissue</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-05-08</date><risdate>2012</risdate><volume>109</volume><issue>19</issue><spage>7175</spage><epage>7180</epage><pages>7175-7180</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22538815</pmid><doi>10.1073/pnas.1121193109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (19), p.7175-7180 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_22538815 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptive optics Algorithms animal tissues Animals Biological Sciences Broadband transmission data collection Fiber optic interferometers Fourier transformations image analysis Image Processing, Computer-Assisted - instrumentation Image Processing, Computer-Assisted - methods Imaging Imaging, Three-Dimensional - instrumentation Imaging, Three-Dimensional - methods Lung - anatomy & histology Lungs Microscopy Microscopy, Interference - instrumentation Microscopy, Interference - methods Optical coherence tomography Optical focus Optics Phantoms, Imaging Physical Sciences Rats Reproducibility of Results Rodents Supernova remnants Tissues Tomography Tomography, Optical Coherence - instrumentation Tomography, Optical Coherence - methods |
title | Computational adaptive optics for broadband optical interferometric tomography of biological tissue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20adaptive%20optics%20for%20broadband%20optical%20interferometric%20tomography%20of%20biological%20tissue&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Adie,%20Steven%20G.&rft.date=2012-05-08&rft.volume=109&rft.issue=19&rft.spage=7175&rft.epage=7180&rft.pages=7175-7180&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1121193109&rft_dat=%3Cjstor_proqu%3E41592987%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1012096706&rft_id=info:pmid/22538815&rft_jstor_id=41592987&rfr_iscdi=true |