Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam

Forty-six chickens and 48 ducks were sampled from four Vietnamese poultry premises in 2009 infected with H5N1 highly pathogenic avian influenza (HPAI) clade 2.3.2 and 2.3.4 viruses, which also differed by cleavage site (CS) sequences in their haemagglutinin (HA) genes. All clinical specimens (n=282)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Avian pathology 2012-04, Vol.41 (2), p.177-193
Hauptverfasser: Slomka, Marek J, To, Thanh L, Tong, Hien H, Coward, Vivien J, Hanna, Amanda, Shell, Wendy, Pavlidis, Theo, Densham, Anstice L. E, Kargiolakis, Georgios, Arnold, Mark E, Banks, Jill, Brown, Ian H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 177
container_title Avian pathology
container_volume 41
creator Slomka, Marek J
To, Thanh L
Tong, Hien H
Coward, Vivien J
Hanna, Amanda
Shell, Wendy
Pavlidis, Theo
Densham, Anstice L. E
Kargiolakis, Georgios
Arnold, Mark E
Banks, Jill
Brown, Ian H
description Forty-six chickens and 48 ducks were sampled from four Vietnamese poultry premises in 2009 infected with H5N1 highly pathogenic avian influenza (HPAI) clade 2.3.2 and 2.3.4 viruses, which also differed by cleavage site (CS) sequences in their haemagglutinin (HA) genes. All clinical specimens (n=282), namely tracheal and cloacal swabs plus feathers, were tested by five Eurasian reverse-transcriptase AI RealTime polymerase chain reaction (RRT-PCR) methods. Bayesian modelling showed similar high sensitivity for the validated H5 HA2 RRT-PCR and a new modified M-gene RRT-PCR that utilizes lyophilized reagents. Both were more sensitive than the validated “wet” M-gene RRT-PCR. Another RRT-PCR, which targeted the H5-gene CS region, was effective for clade 2.3.4 detection, but severely compromised for clade 2.3.2 viruses. Reduced sensitivity of the H5 CS and “wet” M-gene RRT-PCRs correlated with mismatches between the target and the primer and/or probe sequences. However, the H5 HA2 RRT-PCR sensitively detected both clade 2.3.2 and 2.3.4 viruses, and agreed with N1 RRT-PCR results. Feather testing from diseased chicken and duck flocks by AI RRT-PCRs resulted in the most sensitive identification of H5N1 HPAI-infected birds. Evolution of new H5N1 HPAI clades remains a concern for currently affected Asian countries, but also for more distant regions where it is important to be prepared for new incursions of H5N1 HPAI viruses. Genetic evidence for adamantane resistance and sensitivity was also observed in isolates from both clades.
doi_str_mv 10.1080/03079457.2012.656578
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22515536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643555121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-78eed73b4ab636bd488486e941d8e7a3257f8fa729198a82bbd2783d00e91f993</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEoqXwBggssWEzg6-Js0JoRClSBQsoW-skPsm4cuzBToqmD8Bz42FahNiw8pH8_b8vX1U9Z3TNqKZvqKBNK1Wz5pTxda1q1egH1SmTtVoJIfTDv-aT6knO15TSWin-uDrhXDGlRH1a_dxswXsMI2YyxESg75cEMxIIluxSnHYzmaLHfvGQiHUwhphdJnEgvQeLv6etG7d-T3Ywb-OIwfUEbhwE4sLgFwy3QC7UJ0ZuXFpySeCEaXRhLPvkm8M5wPS0ejSAz_jsbj2rrs7ff91crC4_f_i4eXe56iVT86rRiLYRnYSuFnVnpdZS19hKZjU2ILhqBj1Aw1vWatC86yxvtLCUYsuGthVn1etjb3na9wXzbCaXe_QeAsYlG0ap1lwrXRf01T_odVxSKLc7UK1QWipeKHmk-hRzTjiYXXITpH2BzMGTufdkDp7M0VOJvbgrX7oJ7Z_QvZgCvD0C5Q9jmuBHTN6aGfY-piFB6F024j9HvDw2DBANjKkErr4UQFHKJKVSil8iv6tB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009358452</pqid></control><display><type>article</type><title>Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Slomka, Marek J ; To, Thanh L ; Tong, Hien H ; Coward, Vivien J ; Hanna, Amanda ; Shell, Wendy ; Pavlidis, Theo ; Densham, Anstice L. E ; Kargiolakis, Georgios ; Arnold, Mark E ; Banks, Jill ; Brown, Ian H</creator><creatorcontrib>Slomka, Marek J ; To, Thanh L ; Tong, Hien H ; Coward, Vivien J ; Hanna, Amanda ; Shell, Wendy ; Pavlidis, Theo ; Densham, Anstice L. E ; Kargiolakis, Georgios ; Arnold, Mark E ; Banks, Jill ; Brown, Ian H</creatorcontrib><description>Forty-six chickens and 48 ducks were sampled from four Vietnamese poultry premises in 2009 infected with H5N1 highly pathogenic avian influenza (HPAI) clade 2.3.2 and 2.3.4 viruses, which also differed by cleavage site (CS) sequences in their haemagglutinin (HA) genes. All clinical specimens (n=282), namely tracheal and cloacal swabs plus feathers, were tested by five Eurasian reverse-transcriptase AI RealTime polymerase chain reaction (RRT-PCR) methods. Bayesian modelling showed similar high sensitivity for the validated H5 HA2 RRT-PCR and a new modified M-gene RRT-PCR that utilizes lyophilized reagents. Both were more sensitive than the validated “wet” M-gene RRT-PCR. Another RRT-PCR, which targeted the H5-gene CS region, was effective for clade 2.3.4 detection, but severely compromised for clade 2.3.2 viruses. Reduced sensitivity of the H5 CS and “wet” M-gene RRT-PCRs correlated with mismatches between the target and the primer and/or probe sequences. However, the H5 HA2 RRT-PCR sensitively detected both clade 2.3.2 and 2.3.4 viruses, and agreed with N1 RRT-PCR results. Feather testing from diseased chicken and duck flocks by AI RRT-PCRs resulted in the most sensitive identification of H5N1 HPAI-infected birds. Evolution of new H5N1 HPAI clades remains a concern for currently affected Asian countries, but also for more distant regions where it is important to be prepared for new incursions of H5N1 HPAI viruses. Genetic evidence for adamantane resistance and sensitivity was also observed in isolates from both clades.</description><identifier>ISSN: 1465-3338</identifier><identifier>ISSN: 0307-9457</identifier><identifier>EISSN: 1465-3338</identifier><identifier>DOI: 10.1080/03079457.2012.656578</identifier><identifier>PMID: 22515536</identifier><language>eng</language><publisher>England: Taylor &amp; Francis Group</publisher><subject>Animals ; Avian flu ; avian influenza ; Base Sequence ; Bayes Theorem ; Bayesian analysis ; Chickens ; Cluster Analysis ; Ducks ; evolution ; feathers ; Feathers - virology ; flocks ; freeze drying ; genes ; Hemagglutinin Glycoproteins, Influenza Virus - genetics ; hemagglutinins ; Influenza A Virus, H5N1 Subtype - classification ; Influenza A Virus, H5N1 Subtype - genetics ; Influenza A Virus, H5N1 Subtype - pathogenicity ; Influenza in Birds - diagnosis ; Influenza in Birds - epidemiology ; Molecular Sequence Data ; Neuraminidase - genetics ; Phylogeny ; Polymerase chain reaction ; Poultry ; Poultry Diseases - diagnosis ; Poultry Diseases - epidemiology ; Poultry Diseases - virology ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Vietnam - epidemiology ; viruses ; Wildfowl</subject><ispartof>Avian pathology, 2012-04, Vol.41 (2), p.177-193</ispartof><rights>Copyright Houghton Trust Ltd 2012</rights><rights>Copyright Taylor &amp; Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-78eed73b4ab636bd488486e941d8e7a3257f8fa729198a82bbd2783d00e91f993</citedby><cites>FETCH-LOGICAL-c415t-78eed73b4ab636bd488486e941d8e7a3257f8fa729198a82bbd2783d00e91f993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22515536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slomka, Marek J</creatorcontrib><creatorcontrib>To, Thanh L</creatorcontrib><creatorcontrib>Tong, Hien H</creatorcontrib><creatorcontrib>Coward, Vivien J</creatorcontrib><creatorcontrib>Hanna, Amanda</creatorcontrib><creatorcontrib>Shell, Wendy</creatorcontrib><creatorcontrib>Pavlidis, Theo</creatorcontrib><creatorcontrib>Densham, Anstice L. E</creatorcontrib><creatorcontrib>Kargiolakis, Georgios</creatorcontrib><creatorcontrib>Arnold, Mark E</creatorcontrib><creatorcontrib>Banks, Jill</creatorcontrib><creatorcontrib>Brown, Ian H</creatorcontrib><title>Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam</title><title>Avian pathology</title><addtitle>Avian Pathol</addtitle><description>Forty-six chickens and 48 ducks were sampled from four Vietnamese poultry premises in 2009 infected with H5N1 highly pathogenic avian influenza (HPAI) clade 2.3.2 and 2.3.4 viruses, which also differed by cleavage site (CS) sequences in their haemagglutinin (HA) genes. All clinical specimens (n=282), namely tracheal and cloacal swabs plus feathers, were tested by five Eurasian reverse-transcriptase AI RealTime polymerase chain reaction (RRT-PCR) methods. Bayesian modelling showed similar high sensitivity for the validated H5 HA2 RRT-PCR and a new modified M-gene RRT-PCR that utilizes lyophilized reagents. Both were more sensitive than the validated “wet” M-gene RRT-PCR. Another RRT-PCR, which targeted the H5-gene CS region, was effective for clade 2.3.4 detection, but severely compromised for clade 2.3.2 viruses. Reduced sensitivity of the H5 CS and “wet” M-gene RRT-PCRs correlated with mismatches between the target and the primer and/or probe sequences. However, the H5 HA2 RRT-PCR sensitively detected both clade 2.3.2 and 2.3.4 viruses, and agreed with N1 RRT-PCR results. Feather testing from diseased chicken and duck flocks by AI RRT-PCRs resulted in the most sensitive identification of H5N1 HPAI-infected birds. Evolution of new H5N1 HPAI clades remains a concern for currently affected Asian countries, but also for more distant regions where it is important to be prepared for new incursions of H5N1 HPAI viruses. Genetic evidence for adamantane resistance and sensitivity was also observed in isolates from both clades.</description><subject>Animals</subject><subject>Avian flu</subject><subject>avian influenza</subject><subject>Base Sequence</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Chickens</subject><subject>Cluster Analysis</subject><subject>Ducks</subject><subject>evolution</subject><subject>feathers</subject><subject>Feathers - virology</subject><subject>flocks</subject><subject>freeze drying</subject><subject>genes</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - genetics</subject><subject>hemagglutinins</subject><subject>Influenza A Virus, H5N1 Subtype - classification</subject><subject>Influenza A Virus, H5N1 Subtype - genetics</subject><subject>Influenza A Virus, H5N1 Subtype - pathogenicity</subject><subject>Influenza in Birds - diagnosis</subject><subject>Influenza in Birds - epidemiology</subject><subject>Molecular Sequence Data</subject><subject>Neuraminidase - genetics</subject><subject>Phylogeny</subject><subject>Polymerase chain reaction</subject><subject>Poultry</subject><subject>Poultry Diseases - diagnosis</subject><subject>Poultry Diseases - epidemiology</subject><subject>Poultry Diseases - virology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sequence Analysis, DNA</subject><subject>Vietnam - epidemiology</subject><subject>viruses</subject><subject>Wildfowl</subject><issn>1465-3338</issn><issn>0307-9457</issn><issn>1465-3338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEoqXwBggssWEzg6-Js0JoRClSBQsoW-skPsm4cuzBToqmD8Bz42FahNiw8pH8_b8vX1U9Z3TNqKZvqKBNK1Wz5pTxda1q1egH1SmTtVoJIfTDv-aT6knO15TSWin-uDrhXDGlRH1a_dxswXsMI2YyxESg75cEMxIIluxSnHYzmaLHfvGQiHUwhphdJnEgvQeLv6etG7d-T3Ywb-OIwfUEbhwE4sLgFwy3QC7UJ0ZuXFpySeCEaXRhLPvkm8M5wPS0ejSAz_jsbj2rrs7ff91crC4_f_i4eXe56iVT86rRiLYRnYSuFnVnpdZS19hKZjU2ILhqBj1Aw1vWatC86yxvtLCUYsuGthVn1etjb3na9wXzbCaXe_QeAsYlG0ap1lwrXRf01T_odVxSKLc7UK1QWipeKHmk-hRzTjiYXXITpH2BzMGTufdkDp7M0VOJvbgrX7oJ7Z_QvZgCvD0C5Q9jmuBHTN6aGfY-piFB6F024j9HvDw2DBANjKkErr4UQFHKJKVSil8iv6tB</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Slomka, Marek J</creator><creator>To, Thanh L</creator><creator>Tong, Hien H</creator><creator>Coward, Vivien J</creator><creator>Hanna, Amanda</creator><creator>Shell, Wendy</creator><creator>Pavlidis, Theo</creator><creator>Densham, Anstice L. E</creator><creator>Kargiolakis, Georgios</creator><creator>Arnold, Mark E</creator><creator>Banks, Jill</creator><creator>Brown, Ian H</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>F1W</scope><scope>H94</scope><scope>H95</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam</title><author>Slomka, Marek J ; To, Thanh L ; Tong, Hien H ; Coward, Vivien J ; Hanna, Amanda ; Shell, Wendy ; Pavlidis, Theo ; Densham, Anstice L. E ; Kargiolakis, Georgios ; Arnold, Mark E ; Banks, Jill ; Brown, Ian H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-78eed73b4ab636bd488486e941d8e7a3257f8fa729198a82bbd2783d00e91f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Avian flu</topic><topic>avian influenza</topic><topic>Base Sequence</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Chickens</topic><topic>Cluster Analysis</topic><topic>Ducks</topic><topic>evolution</topic><topic>feathers</topic><topic>Feathers - virology</topic><topic>flocks</topic><topic>freeze drying</topic><topic>genes</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - genetics</topic><topic>hemagglutinins</topic><topic>Influenza A Virus, H5N1 Subtype - classification</topic><topic>Influenza A Virus, H5N1 Subtype - genetics</topic><topic>Influenza A Virus, H5N1 Subtype - pathogenicity</topic><topic>Influenza in Birds - diagnosis</topic><topic>Influenza in Birds - epidemiology</topic><topic>Molecular Sequence Data</topic><topic>Neuraminidase - genetics</topic><topic>Phylogeny</topic><topic>Polymerase chain reaction</topic><topic>Poultry</topic><topic>Poultry Diseases - diagnosis</topic><topic>Poultry Diseases - epidemiology</topic><topic>Poultry Diseases - virology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sequence Analysis, DNA</topic><topic>Vietnam - epidemiology</topic><topic>viruses</topic><topic>Wildfowl</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slomka, Marek J</creatorcontrib><creatorcontrib>To, Thanh L</creatorcontrib><creatorcontrib>Tong, Hien H</creatorcontrib><creatorcontrib>Coward, Vivien J</creatorcontrib><creatorcontrib>Hanna, Amanda</creatorcontrib><creatorcontrib>Shell, Wendy</creatorcontrib><creatorcontrib>Pavlidis, Theo</creatorcontrib><creatorcontrib>Densham, Anstice L. E</creatorcontrib><creatorcontrib>Kargiolakis, Georgios</creatorcontrib><creatorcontrib>Arnold, Mark E</creatorcontrib><creatorcontrib>Banks, Jill</creatorcontrib><creatorcontrib>Brown, Ian H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Avian pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slomka, Marek J</au><au>To, Thanh L</au><au>Tong, Hien H</au><au>Coward, Vivien J</au><au>Hanna, Amanda</au><au>Shell, Wendy</au><au>Pavlidis, Theo</au><au>Densham, Anstice L. E</au><au>Kargiolakis, Georgios</au><au>Arnold, Mark E</au><au>Banks, Jill</au><au>Brown, Ian H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam</atitle><jtitle>Avian pathology</jtitle><addtitle>Avian Pathol</addtitle><date>2012-04</date><risdate>2012</risdate><volume>41</volume><issue>2</issue><spage>177</spage><epage>193</epage><pages>177-193</pages><issn>1465-3338</issn><issn>0307-9457</issn><eissn>1465-3338</eissn><abstract>Forty-six chickens and 48 ducks were sampled from four Vietnamese poultry premises in 2009 infected with H5N1 highly pathogenic avian influenza (HPAI) clade 2.3.2 and 2.3.4 viruses, which also differed by cleavage site (CS) sequences in their haemagglutinin (HA) genes. All clinical specimens (n=282), namely tracheal and cloacal swabs plus feathers, were tested by five Eurasian reverse-transcriptase AI RealTime polymerase chain reaction (RRT-PCR) methods. Bayesian modelling showed similar high sensitivity for the validated H5 HA2 RRT-PCR and a new modified M-gene RRT-PCR that utilizes lyophilized reagents. Both were more sensitive than the validated “wet” M-gene RRT-PCR. Another RRT-PCR, which targeted the H5-gene CS region, was effective for clade 2.3.4 detection, but severely compromised for clade 2.3.2 viruses. Reduced sensitivity of the H5 CS and “wet” M-gene RRT-PCRs correlated with mismatches between the target and the primer and/or probe sequences. However, the H5 HA2 RRT-PCR sensitively detected both clade 2.3.2 and 2.3.4 viruses, and agreed with N1 RRT-PCR results. Feather testing from diseased chicken and duck flocks by AI RRT-PCRs resulted in the most sensitive identification of H5N1 HPAI-infected birds. Evolution of new H5N1 HPAI clades remains a concern for currently affected Asian countries, but also for more distant regions where it is important to be prepared for new incursions of H5N1 HPAI viruses. Genetic evidence for adamantane resistance and sensitivity was also observed in isolates from both clades.</abstract><cop>England</cop><pub>Taylor &amp; Francis Group</pub><pmid>22515536</pmid><doi>10.1080/03079457.2012.656578</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-3338
ispartof Avian pathology, 2012-04, Vol.41 (2), p.177-193
issn 1465-3338
0307-9457
1465-3338
language eng
recordid cdi_pubmed_primary_22515536
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Animals
Avian flu
avian influenza
Base Sequence
Bayes Theorem
Bayesian analysis
Chickens
Cluster Analysis
Ducks
evolution
feathers
Feathers - virology
flocks
freeze drying
genes
Hemagglutinin Glycoproteins, Influenza Virus - genetics
hemagglutinins
Influenza A Virus, H5N1 Subtype - classification
Influenza A Virus, H5N1 Subtype - genetics
Influenza A Virus, H5N1 Subtype - pathogenicity
Influenza in Birds - diagnosis
Influenza in Birds - epidemiology
Molecular Sequence Data
Neuraminidase - genetics
Phylogeny
Polymerase chain reaction
Poultry
Poultry Diseases - diagnosis
Poultry Diseases - epidemiology
Poultry Diseases - virology
Reverse Transcriptase Polymerase Chain Reaction
Sequence Analysis, DNA
Vietnam - epidemiology
viruses
Wildfowl
title Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20for%20accurate%20and%20prompt%20molecular%20diagnosis%20of%20clades%20of%20highly%20pathogenic%20avian%20influenza%20H5N1%20viruses%20emerging%20in%20Vietnam&rft.jtitle=Avian%20pathology&rft.au=Slomka,%20Marek%20J&rft.date=2012-04&rft.volume=41&rft.issue=2&rft.spage=177&rft.epage=193&rft.pages=177-193&rft.issn=1465-3338&rft.eissn=1465-3338&rft_id=info:doi/10.1080/03079457.2012.656578&rft_dat=%3Cproquest_pubme%3E2643555121%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009358452&rft_id=info:pmid/22515536&rfr_iscdi=true