Balancing on tightropes and slacklines

Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2012-09, Vol.9 (74), p.2097-2108
Hauptverfasser: Paoletti, P., Mahadevan, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2108
container_issue 74
container_start_page 2097
container_title Journal of the Royal Society interface
container_volume 9
creator Paoletti, P.
Mahadevan, L.
description Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this system and use optimal control theory to design a strategy for maintaining an upright position. Our analysis of the open and closed-loop dynamics shows the existence of an optimal rope sag where balancing requires minimal effort, consistent with qualitative observations and suggestive of strategies for optimizing balancing performance while standing and walking. Our consideration of the effects of nonlinearities, potential parameter coupling and delays on the overall performance shows that although these factors change the results quantitatively, the existence of an optimal strategy persists.
doi_str_mv 10.1098/rsif.2012.0077
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22513724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1030076913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-112f33e93f3d235f02e6987266537b79f1c95f759d159eb327e868227d4763723</originalsourceid><addsrcrecordid>eNp9kEtv1DAUhS0EoqWwZYlmhdhksH39iDdItKK0qCoSL7G78jjO1G0mntpJxfDr61HKqBWClW3dc885_gh5yeicUVO_TTm0c04Zn1Oq9SOyz7TglVSKP97da7NHnuV8SSlokPIp2eNcMtBc7JPXh7azvQv9chb72RCWF0OKa59ntm9mubPuqgu9z8_Jk9Z22b-4Ow_I9-MP345OqrPPH0-P3p9VTioxVIzxFsAbaKHhIFvKvTK15kpJ0AttWuaMbLU0DZPGL4BrX6uac90IrUohOCDvJt_1uFj5xvl-SLbDdQormzYYbcCHkz5c4DLeIAgqtTDF4M2dQYrXo88DrkJ2viuf9HHMyCgUUMowKNL5JHUp5px8u4thFLdwcQsXt3BxC7csvLpfbif_Q7MI3CRIcVMoRRf8sMHLOKa-PPHL19PjGxO0QFoDo1owJvF3WE85BkPOo8cyfpj7dw34X8o_y1fTVsiD_7XrbtMVKg1a4o9aIJjzQ_lJKPwJt9ZItWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030076913</pqid></control><display><type>article</type><title>Balancing on tightropes and slacklines</title><source>MEDLINE</source><source>PubMed Central</source><creator>Paoletti, P. ; Mahadevan, L.</creator><creatorcontrib>Paoletti, P. ; Mahadevan, L.</creatorcontrib><description>Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this system and use optimal control theory to design a strategy for maintaining an upright position. Our analysis of the open and closed-loop dynamics shows the existence of an optimal rope sag where balancing requires minimal effort, consistent with qualitative observations and suggestive of strategies for optimizing balancing performance while standing and walking. Our consideration of the effects of nonlinearities, potential parameter coupling and delays on the overall performance shows that although these factors change the results quantitatively, the existence of an optimal strategy persists.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2012.0077</identifier><identifier>PMID: 22513724</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Balance ; Humans ; Models, Biological ; Postural Balance - physiology ; Psychomotor Performance - physiology ; Slackline ; Tightrope</subject><ispartof>Journal of the Royal Society interface, 2012-09, Vol.9 (74), p.2097-2108</ispartof><rights>This journal is © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-112f33e93f3d235f02e6987266537b79f1c95f759d159eb327e868227d4763723</citedby><cites>FETCH-LOGICAL-c564t-112f33e93f3d235f02e6987266537b79f1c95f759d159eb327e868227d4763723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405749/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405749/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22513724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paoletti, P.</creatorcontrib><creatorcontrib>Mahadevan, L.</creatorcontrib><title>Balancing on tightropes and slacklines</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this system and use optimal control theory to design a strategy for maintaining an upright position. Our analysis of the open and closed-loop dynamics shows the existence of an optimal rope sag where balancing requires minimal effort, consistent with qualitative observations and suggestive of strategies for optimizing balancing performance while standing and walking. Our consideration of the effects of nonlinearities, potential parameter coupling and delays on the overall performance shows that although these factors change the results quantitatively, the existence of an optimal strategy persists.</description><subject>Balance</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Postural Balance - physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Slackline</subject><subject>Tightrope</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtv1DAUhS0EoqWwZYlmhdhksH39iDdItKK0qCoSL7G78jjO1G0mntpJxfDr61HKqBWClW3dc885_gh5yeicUVO_TTm0c04Zn1Oq9SOyz7TglVSKP97da7NHnuV8SSlokPIp2eNcMtBc7JPXh7azvQv9chb72RCWF0OKa59ntm9mubPuqgu9z8_Jk9Z22b-4Ow_I9-MP345OqrPPH0-P3p9VTioxVIzxFsAbaKHhIFvKvTK15kpJ0AttWuaMbLU0DZPGL4BrX6uac90IrUohOCDvJt_1uFj5xvl-SLbDdQormzYYbcCHkz5c4DLeIAgqtTDF4M2dQYrXo88DrkJ2viuf9HHMyCgUUMowKNL5JHUp5px8u4thFLdwcQsXt3BxC7csvLpfbif_Q7MI3CRIcVMoRRf8sMHLOKa-PPHL19PjGxO0QFoDo1owJvF3WE85BkPOo8cyfpj7dw34X8o_y1fTVsiD_7XrbtMVKg1a4o9aIJjzQ_lJKPwJt9ZItWU</recordid><startdate>20120907</startdate><enddate>20120907</enddate><creator>Paoletti, P.</creator><creator>Mahadevan, L.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120907</creationdate><title>Balancing on tightropes and slacklines</title><author>Paoletti, P. ; Mahadevan, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-112f33e93f3d235f02e6987266537b79f1c95f759d159eb327e868227d4763723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Balance</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Postural Balance - physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Slackline</topic><topic>Tightrope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paoletti, P.</creatorcontrib><creatorcontrib>Mahadevan, L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paoletti, P.</au><au>Mahadevan, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing on tightropes and slacklines</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2012-09-07</date><risdate>2012</risdate><volume>9</volume><issue>74</issue><spage>2097</spage><epage>2108</epage><pages>2097-2108</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this system and use optimal control theory to design a strategy for maintaining an upright position. Our analysis of the open and closed-loop dynamics shows the existence of an optimal rope sag where balancing requires minimal effort, consistent with qualitative observations and suggestive of strategies for optimizing balancing performance while standing and walking. Our consideration of the effects of nonlinearities, potential parameter coupling and delays on the overall performance shows that although these factors change the results quantitatively, the existence of an optimal strategy persists.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>22513724</pmid><doi>10.1098/rsif.2012.0077</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2012-09, Vol.9 (74), p.2097-2108
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmed_primary_22513724
source MEDLINE; PubMed Central
subjects Balance
Humans
Models, Biological
Postural Balance - physiology
Psychomotor Performance - physiology
Slackline
Tightrope
title Balancing on tightropes and slacklines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T11%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20on%20tightropes%20and%20slacklines&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Paoletti,%20P.&rft.date=2012-09-07&rft.volume=9&rft.issue=74&rft.spage=2097&rft.epage=2108&rft.pages=2097-2108&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2012.0077&rft_dat=%3Cproquest_pubme%3E1030076913%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030076913&rft_id=info:pmid/22513724&rfr_iscdi=true