Balancing on tightropes and slacklines
Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2012-09, Vol.9 (74), p.2097-2108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2108 |
---|---|
container_issue | 74 |
container_start_page | 2097 |
container_title | Journal of the Royal Society interface |
container_volume | 9 |
creator | Paoletti, P. Mahadevan, L. |
description | Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this system and use optimal control theory to design a strategy for maintaining an upright position. Our analysis of the open and closed-loop dynamics shows the existence of an optimal rope sag where balancing requires minimal effort, consistent with qualitative observations and suggestive of strategies for optimizing balancing performance while standing and walking. Our consideration of the effects of nonlinearities, potential parameter coupling and delays on the overall performance shows that although these factors change the results quantitatively, the existence of an optimal strategy persists. |
doi_str_mv | 10.1098/rsif.2012.0077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22513724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1030076913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-112f33e93f3d235f02e6987266537b79f1c95f759d159eb327e868227d4763723</originalsourceid><addsrcrecordid>eNp9kEtv1DAUhS0EoqWwZYlmhdhksH39iDdItKK0qCoSL7G78jjO1G0mntpJxfDr61HKqBWClW3dc885_gh5yeicUVO_TTm0c04Zn1Oq9SOyz7TglVSKP97da7NHnuV8SSlokPIp2eNcMtBc7JPXh7azvQv9chb72RCWF0OKa59ntm9mubPuqgu9z8_Jk9Z22b-4Ow_I9-MP345OqrPPH0-P3p9VTioxVIzxFsAbaKHhIFvKvTK15kpJ0AttWuaMbLU0DZPGL4BrX6uac90IrUohOCDvJt_1uFj5xvl-SLbDdQormzYYbcCHkz5c4DLeIAgqtTDF4M2dQYrXo88DrkJ2viuf9HHMyCgUUMowKNL5JHUp5px8u4thFLdwcQsXt3BxC7csvLpfbif_Q7MI3CRIcVMoRRf8sMHLOKa-PPHL19PjGxO0QFoDo1owJvF3WE85BkPOo8cyfpj7dw34X8o_y1fTVsiD_7XrbtMVKg1a4o9aIJjzQ_lJKPwJt9ZItWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030076913</pqid></control><display><type>article</type><title>Balancing on tightropes and slacklines</title><source>MEDLINE</source><source>PubMed Central</source><creator>Paoletti, P. ; Mahadevan, L.</creator><creatorcontrib>Paoletti, P. ; Mahadevan, L.</creatorcontrib><description>Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this system and use optimal control theory to design a strategy for maintaining an upright position. Our analysis of the open and closed-loop dynamics shows the existence of an optimal rope sag where balancing requires minimal effort, consistent with qualitative observations and suggestive of strategies for optimizing balancing performance while standing and walking. Our consideration of the effects of nonlinearities, potential parameter coupling and delays on the overall performance shows that although these factors change the results quantitatively, the existence of an optimal strategy persists.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2012.0077</identifier><identifier>PMID: 22513724</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Balance ; Humans ; Models, Biological ; Postural Balance - physiology ; Psychomotor Performance - physiology ; Slackline ; Tightrope</subject><ispartof>Journal of the Royal Society interface, 2012-09, Vol.9 (74), p.2097-2108</ispartof><rights>This journal is © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-112f33e93f3d235f02e6987266537b79f1c95f759d159eb327e868227d4763723</citedby><cites>FETCH-LOGICAL-c564t-112f33e93f3d235f02e6987266537b79f1c95f759d159eb327e868227d4763723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405749/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405749/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22513724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paoletti, P.</creatorcontrib><creatorcontrib>Mahadevan, L.</creatorcontrib><title>Balancing on tightropes and slacklines</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this system and use optimal control theory to design a strategy for maintaining an upright position. Our analysis of the open and closed-loop dynamics shows the existence of an optimal rope sag where balancing requires minimal effort, consistent with qualitative observations and suggestive of strategies for optimizing balancing performance while standing and walking. Our consideration of the effects of nonlinearities, potential parameter coupling and delays on the overall performance shows that although these factors change the results quantitatively, the existence of an optimal strategy persists.</description><subject>Balance</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Postural Balance - physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Slackline</subject><subject>Tightrope</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtv1DAUhS0EoqWwZYlmhdhksH39iDdItKK0qCoSL7G78jjO1G0mntpJxfDr61HKqBWClW3dc885_gh5yeicUVO_TTm0c04Zn1Oq9SOyz7TglVSKP97da7NHnuV8SSlokPIp2eNcMtBc7JPXh7azvQv9chb72RCWF0OKa59ntm9mubPuqgu9z8_Jk9Z22b-4Ow_I9-MP345OqrPPH0-P3p9VTioxVIzxFsAbaKHhIFvKvTK15kpJ0AttWuaMbLU0DZPGL4BrX6uac90IrUohOCDvJt_1uFj5xvl-SLbDdQormzYYbcCHkz5c4DLeIAgqtTDF4M2dQYrXo88DrkJ2viuf9HHMyCgUUMowKNL5JHUp5px8u4thFLdwcQsXt3BxC7csvLpfbif_Q7MI3CRIcVMoRRf8sMHLOKa-PPHL19PjGxO0QFoDo1owJvF3WE85BkPOo8cyfpj7dw34X8o_y1fTVsiD_7XrbtMVKg1a4o9aIJjzQ_lJKPwJt9ZItWU</recordid><startdate>20120907</startdate><enddate>20120907</enddate><creator>Paoletti, P.</creator><creator>Mahadevan, L.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120907</creationdate><title>Balancing on tightropes and slacklines</title><author>Paoletti, P. ; Mahadevan, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-112f33e93f3d235f02e6987266537b79f1c95f759d159eb327e868227d4763723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Balance</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Postural Balance - physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Slackline</topic><topic>Tightrope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paoletti, P.</creatorcontrib><creatorcontrib>Mahadevan, L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paoletti, P.</au><au>Mahadevan, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing on tightropes and slacklines</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2012-09-07</date><risdate>2012</risdate><volume>9</volume><issue>74</issue><spage>2097</spage><epage>2108</epage><pages>2097-2108</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Balancing on a tightrope or a slackline is an example of a neuromechanical task where the whole body both drives and responds to the dynamics of the external environment, often on multiple timescales. Motivated by a range of neurophysiological observations, here we formulate a minimal model for this system and use optimal control theory to design a strategy for maintaining an upright position. Our analysis of the open and closed-loop dynamics shows the existence of an optimal rope sag where balancing requires minimal effort, consistent with qualitative observations and suggestive of strategies for optimizing balancing performance while standing and walking. Our consideration of the effects of nonlinearities, potential parameter coupling and delays on the overall performance shows that although these factors change the results quantitatively, the existence of an optimal strategy persists.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>22513724</pmid><doi>10.1098/rsif.2012.0077</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2012-09, Vol.9 (74), p.2097-2108 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmed_primary_22513724 |
source | MEDLINE; PubMed Central |
subjects | Balance Humans Models, Biological Postural Balance - physiology Psychomotor Performance - physiology Slackline Tightrope |
title | Balancing on tightropes and slacklines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T11%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20on%20tightropes%20and%20slacklines&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Paoletti,%20P.&rft.date=2012-09-07&rft.volume=9&rft.issue=74&rft.spage=2097&rft.epage=2108&rft.pages=2097-2108&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2012.0077&rft_dat=%3Cproquest_pubme%3E1030076913%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030076913&rft_id=info:pmid/22513724&rfr_iscdi=true |