Molecular-spin dynamics study of electromagnons in multiferroic RMn2O5

We investigate the electromagnon in magnetoferroelectrics RMn2O5 using combined molecular-spin dynamics simulations. We confirm that the origin of the electromagnon modes observed in the optical spectra is due to the exchange-striction interaction between the magnons and the phonons, and the dielect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2012-05, Vol.24 (20), p.206001-206001
Hauptverfasser: Cao, Kun, Guo, G-C, He, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206001
container_issue 20
container_start_page 206001
container_title Journal of physics. Condensed matter
container_volume 24
creator Cao, Kun
Guo, G-C
He, Lixin
description We investigate the electromagnon in magnetoferroelectrics RMn2O5 using combined molecular-spin dynamics simulations. We confirm that the origin of the electromagnon modes observed in the optical spectra is due to the exchange-striction interaction between the magnons and the phonons, and the dielectric step at the magnetic phase transition is due to the appearance of the electromagnon in the low-temperature phase in these materials. The magnetic anisotropy breaks the rotational symmetry of the magnetic structures and, as a result, the electromagnon splits into three modes in RMn2O5. We find that the electromagnon frequencies are very sensitive to the magnetic wavevector along the a direction qx. Therefore, the electromagnon frequencies of TmMn2O5 (qx ∼ 0.467) are expected to be much higher than those of other materials of the family, such as R= Tb, Y, Ho, etc (qx ∼ 0.48). We further calculate the electromagnons in the magnetic field, and find a new mode appearing in the magnetic field. Although the modes' frequencies change significantly under magnetic field, the total static dielectric constant contributed from the electromagnons does not change much in the magnetic field, suggesting that the colossal magnetodielectric effects in these materials may not be caused by the electromagnons.
doi_str_mv 10.1088/0953-8984/24/20/206001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22510497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010231369</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-e8fd3bc0c809712a91ab3f91c0811a0b5d2f1c6681b883a7aa611f5675de8f403</originalsourceid><addsrcrecordid>eNpFkU9LAzEQxYMotla_QtmL4GXtTLJ_skcRq0JLQRS8hWw2kZTdTU12D_32prQqPJjD_GaG94aQOcI9AucLqHKW8opnCxoFUQUAnpEpsgLTIuOf52T6B03IVQhbAMg4yy7JhNIcIavKKVmuXavV2Eqfhp3tk2bfy86qkIRhbPaJM4mO_cG7Tn71rg9JZLqxHazR3jurkrd1Tzf5Nbkwsg365lRn5GP59P74kq42z6-PD6vUUsyGVHPTsFqB4lCVSGWFsmamQgUcUUKdN9SgKgqONedMllIWiCYvyryJoxmwGbk77t159z3qMIjOBqXbVvbajUEgIFAWM6giOj-hY93pRuy87aTfi1_vEbg9ATIo2Rove2XDP5dzzgGzyNEjZ91ObN3o--gwXhKHR4hDxuKQsaBRII6PYD82Dndt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010231369</pqid></control><display><type>article</type><title>Molecular-spin dynamics study of electromagnons in multiferroic RMn2O5</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Cao, Kun ; Guo, G-C ; He, Lixin</creator><creatorcontrib>Cao, Kun ; Guo, G-C ; He, Lixin</creatorcontrib><description>We investigate the electromagnon in magnetoferroelectrics RMn2O5 using combined molecular-spin dynamics simulations. We confirm that the origin of the electromagnon modes observed in the optical spectra is due to the exchange-striction interaction between the magnons and the phonons, and the dielectric step at the magnetic phase transition is due to the appearance of the electromagnon in the low-temperature phase in these materials. The magnetic anisotropy breaks the rotational symmetry of the magnetic structures and, as a result, the electromagnon splits into three modes in RMn2O5. We find that the electromagnon frequencies are very sensitive to the magnetic wavevector along the a direction qx. Therefore, the electromagnon frequencies of TmMn2O5 (qx ∼ 0.467) are expected to be much higher than those of other materials of the family, such as R= Tb, Y, Ho, etc (qx ∼ 0.48). We further calculate the electromagnons in the magnetic field, and find a new mode appearing in the magnetic field. Although the modes' frequencies change significantly under magnetic field, the total static dielectric constant contributed from the electromagnons does not change much in the magnetic field, suggesting that the colossal magnetodielectric effects in these materials may not be caused by the electromagnons.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/24/20/206001</identifier><identifier>PMID: 22510497</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Magnetic properties and materials ; Magnetically ordered materials: other intrinsic properties ; Magnetomechanical and magnetoelectric effects, magnetostriction ; Physics ; Spin waves</subject><ispartof>Journal of physics. Condensed matter, 2012-05, Vol.24 (20), p.206001-206001</ispartof><rights>2012 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/24/20/206001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25888014$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22510497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Kun</creatorcontrib><creatorcontrib>Guo, G-C</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><title>Molecular-spin dynamics study of electromagnons in multiferroic RMn2O5</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>We investigate the electromagnon in magnetoferroelectrics RMn2O5 using combined molecular-spin dynamics simulations. We confirm that the origin of the electromagnon modes observed in the optical spectra is due to the exchange-striction interaction between the magnons and the phonons, and the dielectric step at the magnetic phase transition is due to the appearance of the electromagnon in the low-temperature phase in these materials. The magnetic anisotropy breaks the rotational symmetry of the magnetic structures and, as a result, the electromagnon splits into three modes in RMn2O5. We find that the electromagnon frequencies are very sensitive to the magnetic wavevector along the a direction qx. Therefore, the electromagnon frequencies of TmMn2O5 (qx ∼ 0.467) are expected to be much higher than those of other materials of the family, such as R= Tb, Y, Ho, etc (qx ∼ 0.48). We further calculate the electromagnons in the magnetic field, and find a new mode appearing in the magnetic field. Although the modes' frequencies change significantly under magnetic field, the total static dielectric constant contributed from the electromagnons does not change much in the magnetic field, suggesting that the colossal magnetodielectric effects in these materials may not be caused by the electromagnons.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Magnetic properties and materials</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Magnetomechanical and magnetoelectric effects, magnetostriction</subject><subject>Physics</subject><subject>Spin waves</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkU9LAzEQxYMotla_QtmL4GXtTLJ_skcRq0JLQRS8hWw2kZTdTU12D_32prQqPJjD_GaG94aQOcI9AucLqHKW8opnCxoFUQUAnpEpsgLTIuOf52T6B03IVQhbAMg4yy7JhNIcIavKKVmuXavV2Eqfhp3tk2bfy86qkIRhbPaJM4mO_cG7Tn71rg9JZLqxHazR3jurkrd1Tzf5Nbkwsg365lRn5GP59P74kq42z6-PD6vUUsyGVHPTsFqB4lCVSGWFsmamQgUcUUKdN9SgKgqONedMllIWiCYvyryJoxmwGbk77t159z3qMIjOBqXbVvbajUEgIFAWM6giOj-hY93pRuy87aTfi1_vEbg9ATIo2Rove2XDP5dzzgGzyNEjZ91ObN3o--gwXhKHR4hDxuKQsaBRII6PYD82Dndt</recordid><startdate>20120523</startdate><enddate>20120523</enddate><creator>Cao, Kun</creator><creator>Guo, G-C</creator><creator>He, Lixin</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20120523</creationdate><title>Molecular-spin dynamics study of electromagnons in multiferroic RMn2O5</title><author>Cao, Kun ; Guo, G-C ; He, Lixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-e8fd3bc0c809712a91ab3f91c0811a0b5d2f1c6681b883a7aa611f5675de8f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Magnetic properties and materials</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Magnetomechanical and magnetoelectric effects, magnetostriction</topic><topic>Physics</topic><topic>Spin waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Kun</creatorcontrib><creatorcontrib>Guo, G-C</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Kun</au><au>Guo, G-C</au><au>He, Lixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-spin dynamics study of electromagnons in multiferroic RMn2O5</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2012-05-23</date><risdate>2012</risdate><volume>24</volume><issue>20</issue><spage>206001</spage><epage>206001</epage><pages>206001-206001</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We investigate the electromagnon in magnetoferroelectrics RMn2O5 using combined molecular-spin dynamics simulations. We confirm that the origin of the electromagnon modes observed in the optical spectra is due to the exchange-striction interaction between the magnons and the phonons, and the dielectric step at the magnetic phase transition is due to the appearance of the electromagnon in the low-temperature phase in these materials. The magnetic anisotropy breaks the rotational symmetry of the magnetic structures and, as a result, the electromagnon splits into three modes in RMn2O5. We find that the electromagnon frequencies are very sensitive to the magnetic wavevector along the a direction qx. Therefore, the electromagnon frequencies of TmMn2O5 (qx ∼ 0.467) are expected to be much higher than those of other materials of the family, such as R= Tb, Y, Ho, etc (qx ∼ 0.48). We further calculate the electromagnons in the magnetic field, and find a new mode appearing in the magnetic field. Although the modes' frequencies change significantly under magnetic field, the total static dielectric constant contributed from the electromagnons does not change much in the magnetic field, suggesting that the colossal magnetodielectric effects in these materials may not be caused by the electromagnons.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>22510497</pmid><doi>10.1088/0953-8984/24/20/206001</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2012-05, Vol.24 (20), p.206001-206001
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_22510497
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Magnetic properties and materials
Magnetically ordered materials: other intrinsic properties
Magnetomechanical and magnetoelectric effects, magnetostriction
Physics
Spin waves
title Molecular-spin dynamics study of electromagnons in multiferroic RMn2O5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-spin%20dynamics%20study%20of%20electromagnons%20in%20multiferroic%20RMn2O5&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Cao,%20Kun&rft.date=2012-05-23&rft.volume=24&rft.issue=20&rft.spage=206001&rft.epage=206001&rft.pages=206001-206001&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/24/20/206001&rft_dat=%3Cproquest_pubme%3E1010231369%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010231369&rft_id=info:pmid/22510497&rfr_iscdi=true