Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1984-11, Vol.PAMI-6 (6), p.721-741 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 741 |
---|---|
container_issue | 6 |
container_start_page | 721 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | PAMI-6 |
creator | Geman, Stuart Geman, Donald |
description | We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios. |
doi_str_mv | 10.1109/TPAMI.1984.4767596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_22499653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4767596</ieee_id><sourcerecordid>24427663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-193683694383c2d2167ee58cbad8a8d39118f420bd5f9e7a265ec9fadb2aaf233</originalsourceid><addsrcrecordid>eNp90F1PwjAUBuDGaATRP6CJ2YUxXjDs17r2ElGRBKNBvF7Ouk5q9oHrSOTfO2Bw6VWT9nlPT16ELgkeEILV_fx9-DoZECX5gIciDJQ4Ql2imPJZwNQx6mIiqC8llR105tw3xoQHmJ2iDqVcKRGwLpp91KVegKut9mYmg1-obVn0vbGNY-c9WldXNl5t7lzfgyLx6oXxHmBtnIWiSbi6rLYRr0y9SQ5fxp2jkxQyZy7as4c-n5_moxd_-jaejIZTX3Mlar9ZVEgmFGeSaZpQIkJjAqljSCTIhClCZMopjpMgVSYEKgKjVQpJTAFSylgP3e7mLqvyZ9VsEuXWaZNlUJhy5SLKOQ2F2MC7fyHBGHMcKiwbSndUV6VzlUmjZWVzqNYNijalR9vSo03pUVt6E7pu56_i3CSHyL7lBty0AJyGLK2g0NYdnCJShlI17GrHrDHm8Lr_5Q96i5KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1000407908</pqid></control><display><type>article</type><title>Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images</title><source>IEEE Electronic Library (IEL)</source><creator>Geman, Stuart ; Geman, Donald</creator><creatorcontrib>Geman, Stuart ; Geman, Donald</creatorcontrib><description>We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.1984.4767596</identifier><identifier>PMID: 22499653</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Additive noise ; Annealing ; Applied sciences ; Artificial intelligence ; Bayesian methods ; Computer science; control theory; systems ; Deformable models ; Degradation ; Energy states ; Exact sciences and technology ; Gibbs distribution ; Image restoration ; line process ; MAP estimate ; Markov random field ; Markov random fields ; Pattern recognition. Digital image processing. Computational geometry ; relaxation ; scene modeling ; spatial degradation ; Stochastic processes ; Temperature distribution</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1984-11, Vol.PAMI-6 (6), p.721-741</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-193683694383c2d2167ee58cbad8a8d39118f420bd5f9e7a265ec9fadb2aaf233</citedby><cites>FETCH-LOGICAL-c496t-193683694383c2d2167ee58cbad8a8d39118f420bd5f9e7a265ec9fadb2aaf233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4767596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4767596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9188789$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22499653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geman, Stuart</creatorcontrib><creatorcontrib>Geman, Donald</creatorcontrib><title>Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.</description><subject>Additive noise</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Deformable models</subject><subject>Degradation</subject><subject>Energy states</subject><subject>Exact sciences and technology</subject><subject>Gibbs distribution</subject><subject>Image restoration</subject><subject>line process</subject><subject>MAP estimate</subject><subject>Markov random field</subject><subject>Markov random fields</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>relaxation</subject><subject>scene modeling</subject><subject>spatial degradation</subject><subject>Stochastic processes</subject><subject>Temperature distribution</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp90F1PwjAUBuDGaATRP6CJ2YUxXjDs17r2ElGRBKNBvF7Ouk5q9oHrSOTfO2Bw6VWT9nlPT16ELgkeEILV_fx9-DoZECX5gIciDJQ4Ql2imPJZwNQx6mIiqC8llR105tw3xoQHmJ2iDqVcKRGwLpp91KVegKut9mYmg1-obVn0vbGNY-c9WldXNl5t7lzfgyLx6oXxHmBtnIWiSbi6rLYRr0y9SQ5fxp2jkxQyZy7as4c-n5_moxd_-jaejIZTX3Mlar9ZVEgmFGeSaZpQIkJjAqljSCTIhClCZMopjpMgVSYEKgKjVQpJTAFSylgP3e7mLqvyZ9VsEuXWaZNlUJhy5SLKOQ2F2MC7fyHBGHMcKiwbSndUV6VzlUmjZWVzqNYNijalR9vSo03pUVt6E7pu56_i3CSHyL7lBty0AJyGLK2g0NYdnCJShlI17GrHrDHm8Lr_5Q96i5KQ</recordid><startdate>19841101</startdate><enddate>19841101</enddate><creator>Geman, Stuart</creator><creator>Geman, Donald</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19841101</creationdate><title>Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images</title><author>Geman, Stuart ; Geman, Donald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-193683694383c2d2167ee58cbad8a8d39118f420bd5f9e7a265ec9fadb2aaf233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Additive noise</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Deformable models</topic><topic>Degradation</topic><topic>Energy states</topic><topic>Exact sciences and technology</topic><topic>Gibbs distribution</topic><topic>Image restoration</topic><topic>line process</topic><topic>MAP estimate</topic><topic>Markov random field</topic><topic>Markov random fields</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>relaxation</topic><topic>scene modeling</topic><topic>spatial degradation</topic><topic>Stochastic processes</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geman, Stuart</creatorcontrib><creatorcontrib>Geman, Donald</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geman, Stuart</au><au>Geman, Donald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>1984-11-01</date><risdate>1984</risdate><volume>PAMI-6</volume><issue>6</issue><spage>721</spage><epage>741</epage><pages>721-741</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22499653</pmid><doi>10.1109/TPAMI.1984.4767596</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1984-11, Vol.PAMI-6 (6), p.721-741 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_pubmed_primary_22499653 |
source | IEEE Electronic Library (IEL) |
subjects | Additive noise Annealing Applied sciences Artificial intelligence Bayesian methods Computer science control theory systems Deformable models Degradation Energy states Exact sciences and technology Gibbs distribution Image restoration line process MAP estimate Markov random field Markov random fields Pattern recognition. Digital image processing. Computational geometry relaxation scene modeling spatial degradation Stochastic processes Temperature distribution |
title | Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Relaxation,%20Gibbs%20Distributions,%20and%20the%20Bayesian%20Restoration%20of%20Images&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Geman,%20Stuart&rft.date=1984-11-01&rft.volume=PAMI-6&rft.issue=6&rft.spage=721&rft.epage=741&rft.pages=721-741&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.1984.4767596&rft_dat=%3Cproquest_RIE%3E24427663%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1000407908&rft_id=info:pmid/22499653&rft_ieee_id=4767596&rfr_iscdi=true |