Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1984-11, Vol.PAMI-6 (6), p.721-741
Hauptverfasser: Geman, Stuart, Geman, Donald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 741
container_issue 6
container_start_page 721
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume PAMI-6
creator Geman, Stuart
Geman, Donald
description We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.
doi_str_mv 10.1109/TPAMI.1984.4767596
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_22499653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4767596</ieee_id><sourcerecordid>24427663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-193683694383c2d2167ee58cbad8a8d39118f420bd5f9e7a265ec9fadb2aaf233</originalsourceid><addsrcrecordid>eNp90F1PwjAUBuDGaATRP6CJ2YUxXjDs17r2ElGRBKNBvF7Ouk5q9oHrSOTfO2Bw6VWT9nlPT16ELgkeEILV_fx9-DoZECX5gIciDJQ4Ql2imPJZwNQx6mIiqC8llR105tw3xoQHmJ2iDqVcKRGwLpp91KVegKut9mYmg1-obVn0vbGNY-c9WldXNl5t7lzfgyLx6oXxHmBtnIWiSbi6rLYRr0y9SQ5fxp2jkxQyZy7as4c-n5_moxd_-jaejIZTX3Mlar9ZVEgmFGeSaZpQIkJjAqljSCTIhClCZMopjpMgVSYEKgKjVQpJTAFSylgP3e7mLqvyZ9VsEuXWaZNlUJhy5SLKOQ2F2MC7fyHBGHMcKiwbSndUV6VzlUmjZWVzqNYNijalR9vSo03pUVt6E7pu56_i3CSHyL7lBty0AJyGLK2g0NYdnCJShlI17GrHrDHm8Lr_5Q96i5KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1000407908</pqid></control><display><type>article</type><title>Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images</title><source>IEEE Electronic Library (IEL)</source><creator>Geman, Stuart ; Geman, Donald</creator><creatorcontrib>Geman, Stuart ; Geman, Donald</creatorcontrib><description>We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.1984.4767596</identifier><identifier>PMID: 22499653</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Additive noise ; Annealing ; Applied sciences ; Artificial intelligence ; Bayesian methods ; Computer science; control theory; systems ; Deformable models ; Degradation ; Energy states ; Exact sciences and technology ; Gibbs distribution ; Image restoration ; line process ; MAP estimate ; Markov random field ; Markov random fields ; Pattern recognition. Digital image processing. Computational geometry ; relaxation ; scene modeling ; spatial degradation ; Stochastic processes ; Temperature distribution</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1984-11, Vol.PAMI-6 (6), p.721-741</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-193683694383c2d2167ee58cbad8a8d39118f420bd5f9e7a265ec9fadb2aaf233</citedby><cites>FETCH-LOGICAL-c496t-193683694383c2d2167ee58cbad8a8d39118f420bd5f9e7a265ec9fadb2aaf233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4767596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4767596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9188789$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22499653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geman, Stuart</creatorcontrib><creatorcontrib>Geman, Donald</creatorcontrib><title>Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.</description><subject>Additive noise</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Deformable models</subject><subject>Degradation</subject><subject>Energy states</subject><subject>Exact sciences and technology</subject><subject>Gibbs distribution</subject><subject>Image restoration</subject><subject>line process</subject><subject>MAP estimate</subject><subject>Markov random field</subject><subject>Markov random fields</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>relaxation</subject><subject>scene modeling</subject><subject>spatial degradation</subject><subject>Stochastic processes</subject><subject>Temperature distribution</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp90F1PwjAUBuDGaATRP6CJ2YUxXjDs17r2ElGRBKNBvF7Ouk5q9oHrSOTfO2Bw6VWT9nlPT16ELgkeEILV_fx9-DoZECX5gIciDJQ4Ql2imPJZwNQx6mIiqC8llR105tw3xoQHmJ2iDqVcKRGwLpp91KVegKut9mYmg1-obVn0vbGNY-c9WldXNl5t7lzfgyLx6oXxHmBtnIWiSbi6rLYRr0y9SQ5fxp2jkxQyZy7as4c-n5_moxd_-jaejIZTX3Mlar9ZVEgmFGeSaZpQIkJjAqljSCTIhClCZMopjpMgVSYEKgKjVQpJTAFSylgP3e7mLqvyZ9VsEuXWaZNlUJhy5SLKOQ2F2MC7fyHBGHMcKiwbSndUV6VzlUmjZWVzqNYNijalR9vSo03pUVt6E7pu56_i3CSHyL7lBty0AJyGLK2g0NYdnCJShlI17GrHrDHm8Lr_5Q96i5KQ</recordid><startdate>19841101</startdate><enddate>19841101</enddate><creator>Geman, Stuart</creator><creator>Geman, Donald</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19841101</creationdate><title>Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images</title><author>Geman, Stuart ; Geman, Donald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-193683694383c2d2167ee58cbad8a8d39118f420bd5f9e7a265ec9fadb2aaf233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Additive noise</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Deformable models</topic><topic>Degradation</topic><topic>Energy states</topic><topic>Exact sciences and technology</topic><topic>Gibbs distribution</topic><topic>Image restoration</topic><topic>line process</topic><topic>MAP estimate</topic><topic>Markov random field</topic><topic>Markov random fields</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>relaxation</topic><topic>scene modeling</topic><topic>spatial degradation</topic><topic>Stochastic processes</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geman, Stuart</creatorcontrib><creatorcontrib>Geman, Donald</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geman, Stuart</au><au>Geman, Donald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>1984-11-01</date><risdate>1984</risdate><volume>PAMI-6</volume><issue>6</issue><spage>721</spage><epage>741</epage><pages>721-741</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22499653</pmid><doi>10.1109/TPAMI.1984.4767596</doi><tpages>21</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1984-11, Vol.PAMI-6 (6), p.721-741
issn 0162-8828
1939-3539
language eng
recordid cdi_pubmed_primary_22499653
source IEEE Electronic Library (IEL)
subjects Additive noise
Annealing
Applied sciences
Artificial intelligence
Bayesian methods
Computer science
control theory
systems
Deformable models
Degradation
Energy states
Exact sciences and technology
Gibbs distribution
Image restoration
line process
MAP estimate
Markov random field
Markov random fields
Pattern recognition. Digital image processing. Computational geometry
relaxation
scene modeling
spatial degradation
Stochastic processes
Temperature distribution
title Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Relaxation,%20Gibbs%20Distributions,%20and%20the%20Bayesian%20Restoration%20of%20Images&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Geman,%20Stuart&rft.date=1984-11-01&rft.volume=PAMI-6&rft.issue=6&rft.spage=721&rft.epage=741&rft.pages=721-741&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.1984.4767596&rft_dat=%3Cproquest_RIE%3E24427663%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1000407908&rft_id=info:pmid/22499653&rft_ieee_id=4767596&rfr_iscdi=true