Naïve Bayes QSDR classification based on spiral-graph Shannon entropies for protein biomarkers in human colon cancer
Fast cancer diagnosis represents a real necessity in applied medicine due to the importance of this disease. Thus, theoretical models can help as prediction tools. Graph theory representation is one option because it permits us to numerically describe any real system such as the protein macromolecul...
Gespeichert in:
Veröffentlicht in: | Molecular bioSystems 2012-06, Vol.8 (6), p.1716-1722 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1722 |
---|---|
container_issue | 6 |
container_start_page | 1716 |
container_title | Molecular bioSystems |
container_volume | 8 |
creator | Aguiar-Pulido, Vanessa Munteanu, Cristian R Seoane, José A Fernández-Blanco, Enrique Pérez-Montoto, Lázaro G González-Díaz, Humberto Dorado, Julián |
description | Fast cancer diagnosis represents a real necessity in applied medicine due to the importance of this disease. Thus, theoretical models can help as prediction tools. Graph theory representation is one option because it permits us to numerically describe any real system such as the protein macromolecules by transforming real properties into molecular graph topological indices. This study proposes a new classification model for proteins linked with human colon cancer by using spiral graph topological indices of protein amino acid sequences. The best quantitative structure-disease relationship model is based on eleven Shannon entropy indices. It was obtained with the Naïve Bayes method and shows excellent predictive ability (90.92%) for new proteins linked with this type of cancer. The statistical analysis confirms that this model allows diagnosing the absence of human colon cancer obtaining an area under receiver operating characteristic of 0.91. The methodology presented can be used for any type of sequential information such as any protein and nucleic acid sequence.
An algorithm for colon cancer prediction is presented. Amino acid sequences are coded using spiral graph topological and Shannon entropy indices. These indices are then classified using a Naïve Bayes model. |
doi_str_mv | 10.1039/c2mb25039j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22466084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1012207235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-122441537a11ab4ecbc585c74d430601479341f48fa39aac34cd2511e316f4e93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqWwYQ8yO4QU8CuPLqE8pQoEBYldNHEc6pLEwU6Q-lV8BD-GUUu7Y-Vrz5nrmYvQPiWnlPDhmWRVxkKvZhuoT2PBAkZCurnS0WsP7Tg3I4QngpJt1GNMRBFJRB919_D99anwBcyVw4-TyycsS3BOF1pCq02NM3Aqx164RlsogzcLzRRPplDX_lHVrTWN9r2FsbixplXa92hTgX1X1mF_m3YV1Fia0vMSaqnsLtoqoHRqb3kO0Mv11fPoNhg_3NyNzseB5DxsA-rnFDTkMVAKmVAyk2ESyljkgpOIUBEPuaCFSArgQwDJhcxZSKniNCqEGvIBOl74-sE-OuXatNJOqrKEWpnOpZT4L0jMeOjRkwUqrXHOqiJtrPZLzD2U_sacrmP28OHSt8sqla_Qv1w9cLQArJOr6togbfLCMwf_MfwHlYiOpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012207235</pqid></control><display><type>article</type><title>Naïve Bayes QSDR classification based on spiral-graph Shannon entropies for protein biomarkers in human colon cancer</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Aguiar-Pulido, Vanessa ; Munteanu, Cristian R ; Seoane, José A ; Fernández-Blanco, Enrique ; Pérez-Montoto, Lázaro G ; González-Díaz, Humberto ; Dorado, Julián</creator><creatorcontrib>Aguiar-Pulido, Vanessa ; Munteanu, Cristian R ; Seoane, José A ; Fernández-Blanco, Enrique ; Pérez-Montoto, Lázaro G ; González-Díaz, Humberto ; Dorado, Julián</creatorcontrib><description>Fast cancer diagnosis represents a real necessity in applied medicine due to the importance of this disease. Thus, theoretical models can help as prediction tools. Graph theory representation is one option because it permits us to numerically describe any real system such as the protein macromolecules by transforming real properties into molecular graph topological indices. This study proposes a new classification model for proteins linked with human colon cancer by using spiral graph topological indices of protein amino acid sequences. The best quantitative structure-disease relationship model is based on eleven Shannon entropy indices. It was obtained with the Naïve Bayes method and shows excellent predictive ability (90.92%) for new proteins linked with this type of cancer. The statistical analysis confirms that this model allows diagnosing the absence of human colon cancer obtaining an area under receiver operating characteristic of 0.91. The methodology presented can be used for any type of sequential information such as any protein and nucleic acid sequence.
An algorithm for colon cancer prediction is presented. Amino acid sequences are coded using spiral graph topological and Shannon entropy indices. These indices are then classified using a Naïve Bayes model.</description><identifier>ISSN: 1742-206X</identifier><identifier>EISSN: 1742-2051</identifier><identifier>DOI: 10.1039/c2mb25039j</identifier><identifier>PMID: 22466084</identifier><language>eng</language><publisher>England</publisher><subject>Amino Acid Sequence ; Area Under Curve ; Bayes Theorem ; Biomarkers, Tumor - analysis ; Biomarkers, Tumor - chemistry ; Colonic Neoplasms - chemistry ; Colonic Neoplasms - diagnosis ; Computational Biology - methods ; Entropy ; Humans ; Models, Biological ; Molecular Sequence Data ; Proteins - analysis ; Proteins - chemistry ; Quantitative Structure-Activity Relationship ; ROC Curve ; Sequence Analysis, Protein - methods</subject><ispartof>Molecular bioSystems, 2012-06, Vol.8 (6), p.1716-1722</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-122441537a11ab4ecbc585c74d430601479341f48fa39aac34cd2511e316f4e93</citedby><cites>FETCH-LOGICAL-c335t-122441537a11ab4ecbc585c74d430601479341f48fa39aac34cd2511e316f4e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22466084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguiar-Pulido, Vanessa</creatorcontrib><creatorcontrib>Munteanu, Cristian R</creatorcontrib><creatorcontrib>Seoane, José A</creatorcontrib><creatorcontrib>Fernández-Blanco, Enrique</creatorcontrib><creatorcontrib>Pérez-Montoto, Lázaro G</creatorcontrib><creatorcontrib>González-Díaz, Humberto</creatorcontrib><creatorcontrib>Dorado, Julián</creatorcontrib><title>Naïve Bayes QSDR classification based on spiral-graph Shannon entropies for protein biomarkers in human colon cancer</title><title>Molecular bioSystems</title><addtitle>Mol Biosyst</addtitle><description>Fast cancer diagnosis represents a real necessity in applied medicine due to the importance of this disease. Thus, theoretical models can help as prediction tools. Graph theory representation is one option because it permits us to numerically describe any real system such as the protein macromolecules by transforming real properties into molecular graph topological indices. This study proposes a new classification model for proteins linked with human colon cancer by using spiral graph topological indices of protein amino acid sequences. The best quantitative structure-disease relationship model is based on eleven Shannon entropy indices. It was obtained with the Naïve Bayes method and shows excellent predictive ability (90.92%) for new proteins linked with this type of cancer. The statistical analysis confirms that this model allows diagnosing the absence of human colon cancer obtaining an area under receiver operating characteristic of 0.91. The methodology presented can be used for any type of sequential information such as any protein and nucleic acid sequence.
An algorithm for colon cancer prediction is presented. Amino acid sequences are coded using spiral graph topological and Shannon entropy indices. These indices are then classified using a Naïve Bayes model.</description><subject>Amino Acid Sequence</subject><subject>Area Under Curve</subject><subject>Bayes Theorem</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Biomarkers, Tumor - chemistry</subject><subject>Colonic Neoplasms - chemistry</subject><subject>Colonic Neoplasms - diagnosis</subject><subject>Computational Biology - methods</subject><subject>Entropy</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Proteins - analysis</subject><subject>Proteins - chemistry</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>ROC Curve</subject><subject>Sequence Analysis, Protein - methods</subject><issn>1742-206X</issn><issn>1742-2051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqWwYQ8yO4QU8CuPLqE8pQoEBYldNHEc6pLEwU6Q-lV8BD-GUUu7Y-Vrz5nrmYvQPiWnlPDhmWRVxkKvZhuoT2PBAkZCurnS0WsP7Tg3I4QngpJt1GNMRBFJRB919_D99anwBcyVw4-TyycsS3BOF1pCq02NM3Aqx164RlsogzcLzRRPplDX_lHVrTWN9r2FsbixplXa92hTgX1X1mF_m3YV1Fia0vMSaqnsLtoqoHRqb3kO0Mv11fPoNhg_3NyNzseB5DxsA-rnFDTkMVAKmVAyk2ESyljkgpOIUBEPuaCFSArgQwDJhcxZSKniNCqEGvIBOl74-sE-OuXatNJOqrKEWpnOpZT4L0jMeOjRkwUqrXHOqiJtrPZLzD2U_sacrmP28OHSt8sqla_Qv1w9cLQArJOr6togbfLCMwf_MfwHlYiOpw</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Aguiar-Pulido, Vanessa</creator><creator>Munteanu, Cristian R</creator><creator>Seoane, José A</creator><creator>Fernández-Blanco, Enrique</creator><creator>Pérez-Montoto, Lázaro G</creator><creator>González-Díaz, Humberto</creator><creator>Dorado, Julián</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201206</creationdate><title>Naïve Bayes QSDR classification based on spiral-graph Shannon entropies for protein biomarkers in human colon cancer</title><author>Aguiar-Pulido, Vanessa ; Munteanu, Cristian R ; Seoane, José A ; Fernández-Blanco, Enrique ; Pérez-Montoto, Lázaro G ; González-Díaz, Humberto ; Dorado, Julián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-122441537a11ab4ecbc585c74d430601479341f48fa39aac34cd2511e316f4e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Area Under Curve</topic><topic>Bayes Theorem</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Biomarkers, Tumor - chemistry</topic><topic>Colonic Neoplasms - chemistry</topic><topic>Colonic Neoplasms - diagnosis</topic><topic>Computational Biology - methods</topic><topic>Entropy</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Proteins - analysis</topic><topic>Proteins - chemistry</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>ROC Curve</topic><topic>Sequence Analysis, Protein - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguiar-Pulido, Vanessa</creatorcontrib><creatorcontrib>Munteanu, Cristian R</creatorcontrib><creatorcontrib>Seoane, José A</creatorcontrib><creatorcontrib>Fernández-Blanco, Enrique</creatorcontrib><creatorcontrib>Pérez-Montoto, Lázaro G</creatorcontrib><creatorcontrib>González-Díaz, Humberto</creatorcontrib><creatorcontrib>Dorado, Julián</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular bioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguiar-Pulido, Vanessa</au><au>Munteanu, Cristian R</au><au>Seoane, José A</au><au>Fernández-Blanco, Enrique</au><au>Pérez-Montoto, Lázaro G</au><au>González-Díaz, Humberto</au><au>Dorado, Julián</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Naïve Bayes QSDR classification based on spiral-graph Shannon entropies for protein biomarkers in human colon cancer</atitle><jtitle>Molecular bioSystems</jtitle><addtitle>Mol Biosyst</addtitle><date>2012-06</date><risdate>2012</risdate><volume>8</volume><issue>6</issue><spage>1716</spage><epage>1722</epage><pages>1716-1722</pages><issn>1742-206X</issn><eissn>1742-2051</eissn><abstract>Fast cancer diagnosis represents a real necessity in applied medicine due to the importance of this disease. Thus, theoretical models can help as prediction tools. Graph theory representation is one option because it permits us to numerically describe any real system such as the protein macromolecules by transforming real properties into molecular graph topological indices. This study proposes a new classification model for proteins linked with human colon cancer by using spiral graph topological indices of protein amino acid sequences. The best quantitative structure-disease relationship model is based on eleven Shannon entropy indices. It was obtained with the Naïve Bayes method and shows excellent predictive ability (90.92%) for new proteins linked with this type of cancer. The statistical analysis confirms that this model allows diagnosing the absence of human colon cancer obtaining an area under receiver operating characteristic of 0.91. The methodology presented can be used for any type of sequential information such as any protein and nucleic acid sequence.
An algorithm for colon cancer prediction is presented. Amino acid sequences are coded using spiral graph topological and Shannon entropy indices. These indices are then classified using a Naïve Bayes model.</abstract><cop>England</cop><pmid>22466084</pmid><doi>10.1039/c2mb25039j</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-206X |
ispartof | Molecular bioSystems, 2012-06, Vol.8 (6), p.1716-1722 |
issn | 1742-206X 1742-2051 |
language | eng |
recordid | cdi_pubmed_primary_22466084 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Area Under Curve Bayes Theorem Biomarkers, Tumor - analysis Biomarkers, Tumor - chemistry Colonic Neoplasms - chemistry Colonic Neoplasms - diagnosis Computational Biology - methods Entropy Humans Models, Biological Molecular Sequence Data Proteins - analysis Proteins - chemistry Quantitative Structure-Activity Relationship ROC Curve Sequence Analysis, Protein - methods |
title | Naïve Bayes QSDR classification based on spiral-graph Shannon entropies for protein biomarkers in human colon cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na%C3%AFve%20Bayes%20QSDR%20classification%20based%20on%20spiral-graph%20Shannon%20entropies%20for%20protein%20biomarkers%20in%20human%20colon%20cancer&rft.jtitle=Molecular%20bioSystems&rft.au=Aguiar-Pulido,%20Vanessa&rft.date=2012-06&rft.volume=8&rft.issue=6&rft.spage=1716&rft.epage=1722&rft.pages=1716-1722&rft.issn=1742-206X&rft.eissn=1742-2051&rft_id=info:doi/10.1039/c2mb25039j&rft_dat=%3Cproquest_pubme%3E1012207235%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1012207235&rft_id=info:pmid/22466084&rfr_iscdi=true |