Application of a maximum likelihood algorithm to ultrasound modulated optical tomography
In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensio...
Gespeichert in:
Veröffentlicht in: | Journal of Biomedical Optics 2012-02, Vol.17 (2), p.026014-0260112 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 0260112 |
---|---|
container_issue | 2 |
container_start_page | 026014 |
container_title | Journal of Biomedical Optics |
container_volume | 17 |
creator | Huynh, Nam T He, Diwei Hayes-Gill, Barrie R Crowe, John A Walker, John G Mather, Melissa L Rose, Felicity R. A. J Parker, Nicholas G Povey, Malcolm J. W Morgan, Stephen P |
description | In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensional image along the US axis. A simple model is developed wherein the detected signal is modelled as a convolution of the US pulse and the properties (ultrasonic/optical) of the medium along the US axis. Based upon this model, a maximum likelihood (ML) method for image reconstruction is established. For the first time to our knowledge, the ML technique for an USMOT signal is investigated both theoretically and experimentally. The ML method inverts the data to retrieve the spatially varying properties of the sample along the US axis, and a signal proportional to the optical properties can be acquired. Simulated results show that the ML method can serve as a useful reconstruction tool for a pulsed USMOT signal even when the signal-to-noise ratio (SNR) is close to unity. Experimental data using 5 cm thick tissue phantoms (scattering coefficient
, anisotropy factor
) demonstrate that the axial resolution is 160
m and the lateral resolution is 600
m using a 10 MHz transducer. |
doi_str_mv | 10.1117/1.JBO.17.2.026014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22463046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671630728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4910779e6c10be948fed35b3252f58e9ac701be49157632dc840c92d1e5d88d93</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EoqXwAGyQd7BJmLET_yxL1fKjSpcFSOws39jpNdjXIU4k-va4pHSJ2NhHmm--xRxCXiK0iCjfYvvp3a5F2bIWmADsHpFT7AU0jCl8XDMo3nAh1Al5Vsp3AFBCi6fkhLFOcOjEKfl2Pk0xDHYJ-UjzSC1N9ldIa6Ix_PAxHHJ21MabPIflkOiS6RqX2Za8Hh1N2a3RLt7RPC1VEus85ZvZTofb5-TJaGPxL-7_M_L16vLLxYfmevf-48X5dTN0PVuaTiNIqb0YEPZed2r0jvd7zno29sprO0jAva9YLwVnblAdDJo59L1Tyml-Rl5v3mnOP1dfFpNCGXyM9ujzWowWXHEAoSr55p8kCon1KpL9B9p32IHUTFYUN3SYcymzH800h2TnW4Ng7loyaGpLpgZmtpbqzqt7_bpP3j1s_K2lAmwDyhT8w7hqPl_taouA8u4Ftvn-ZOS_AfuhmvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541407927</pqid></control><display><type>article</type><title>Application of a maximum likelihood algorithm to ultrasound modulated optical tomography</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Huynh, Nam T ; He, Diwei ; Hayes-Gill, Barrie R ; Crowe, John A ; Walker, John G ; Mather, Melissa L ; Rose, Felicity R. A. J ; Parker, Nicholas G ; Povey, Malcolm J. W ; Morgan, Stephen P</creator><creatorcontrib>Huynh, Nam T ; He, Diwei ; Hayes-Gill, Barrie R ; Crowe, John A ; Walker, John G ; Mather, Melissa L ; Rose, Felicity R. A. J ; Parker, Nicholas G ; Povey, Malcolm J. W ; Morgan, Stephen P</creatorcontrib><description>In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensional image along the US axis. A simple model is developed wherein the detected signal is modelled as a convolution of the US pulse and the properties (ultrasonic/optical) of the medium along the US axis. Based upon this model, a maximum likelihood (ML) method for image reconstruction is established. For the first time to our knowledge, the ML technique for an USMOT signal is investigated both theoretically and experimentally. The ML method inverts the data to retrieve the spatially varying properties of the sample along the US axis, and a signal proportional to the optical properties can be acquired. Simulated results show that the ML method can serve as a useful reconstruction tool for a pulsed USMOT signal even when the signal-to-noise ratio (SNR) is close to unity. Experimental data using 5 cm thick tissue phantoms (scattering coefficient
, anisotropy factor
) demonstrate that the axial resolution is 160
m and the lateral resolution is 600
m using a 10 MHz transducer.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.17.2.026014</identifier><identifier>PMID: 22463046</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Anisotropy ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Likelihood Functions ; maximum likelihood estimation ; Optical properties ; Reconstruction ; Reproducibility of Results ; Sensitivity and Specificity ; Tomography ; Tomography, Optical - methods ; Transducers ; Ultrasonography - methods ; Ultrasound ; ultrasound modulated optical tomography</subject><ispartof>Journal of Biomedical Optics, 2012-02, Vol.17 (2), p.026014-0260112</ispartof><rights>2012 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4910779e6c10be948fed35b3252f58e9ac701be49157632dc840c92d1e5d88d93</citedby><cites>FETCH-LOGICAL-c452t-4910779e6c10be948fed35b3252f58e9ac701be49157632dc840c92d1e5d88d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22463046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huynh, Nam T</creatorcontrib><creatorcontrib>He, Diwei</creatorcontrib><creatorcontrib>Hayes-Gill, Barrie R</creatorcontrib><creatorcontrib>Crowe, John A</creatorcontrib><creatorcontrib>Walker, John G</creatorcontrib><creatorcontrib>Mather, Melissa L</creatorcontrib><creatorcontrib>Rose, Felicity R. A. J</creatorcontrib><creatorcontrib>Parker, Nicholas G</creatorcontrib><creatorcontrib>Povey, Malcolm J. W</creatorcontrib><creatorcontrib>Morgan, Stephen P</creatorcontrib><title>Application of a maximum likelihood algorithm to ultrasound modulated optical tomography</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensional image along the US axis. A simple model is developed wherein the detected signal is modelled as a convolution of the US pulse and the properties (ultrasonic/optical) of the medium along the US axis. Based upon this model, a maximum likelihood (ML) method for image reconstruction is established. For the first time to our knowledge, the ML technique for an USMOT signal is investigated both theoretically and experimentally. The ML method inverts the data to retrieve the spatially varying properties of the sample along the US axis, and a signal proportional to the optical properties can be acquired. Simulated results show that the ML method can serve as a useful reconstruction tool for a pulsed USMOT signal even when the signal-to-noise ratio (SNR) is close to unity. Experimental data using 5 cm thick tissue phantoms (scattering coefficient
, anisotropy factor
) demonstrate that the axial resolution is 160
m and the lateral resolution is 600
m using a 10 MHz transducer.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Likelihood Functions</subject><subject>maximum likelihood estimation</subject><subject>Optical properties</subject><subject>Reconstruction</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tomography</subject><subject>Tomography, Optical - methods</subject><subject>Transducers</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>ultrasound modulated optical tomography</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhS0EoqXwAGyQd7BJmLET_yxL1fKjSpcFSOws39jpNdjXIU4k-va4pHSJ2NhHmm--xRxCXiK0iCjfYvvp3a5F2bIWmADsHpFT7AU0jCl8XDMo3nAh1Al5Vsp3AFBCi6fkhLFOcOjEKfl2Pk0xDHYJ-UjzSC1N9ldIa6Ix_PAxHHJ21MabPIflkOiS6RqX2Za8Hh1N2a3RLt7RPC1VEus85ZvZTofb5-TJaGPxL-7_M_L16vLLxYfmevf-48X5dTN0PVuaTiNIqb0YEPZed2r0jvd7zno29sprO0jAva9YLwVnblAdDJo59L1Tyml-Rl5v3mnOP1dfFpNCGXyM9ujzWowWXHEAoSr55p8kCon1KpL9B9p32IHUTFYUN3SYcymzH800h2TnW4Ng7loyaGpLpgZmtpbqzqt7_bpP3j1s_K2lAmwDyhT8w7hqPl_taouA8u4Ftvn-ZOS_AfuhmvE</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Huynh, Nam T</creator><creator>He, Diwei</creator><creator>Hayes-Gill, Barrie R</creator><creator>Crowe, John A</creator><creator>Walker, John G</creator><creator>Mather, Melissa L</creator><creator>Rose, Felicity R. A. J</creator><creator>Parker, Nicholas G</creator><creator>Povey, Malcolm J. W</creator><creator>Morgan, Stephen P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Application of a maximum likelihood algorithm to ultrasound modulated optical tomography</title><author>Huynh, Nam T ; He, Diwei ; Hayes-Gill, Barrie R ; Crowe, John A ; Walker, John G ; Mather, Melissa L ; Rose, Felicity R. A. J ; Parker, Nicholas G ; Povey, Malcolm J. W ; Morgan, Stephen P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4910779e6c10be948fed35b3252f58e9ac701be49157632dc840c92d1e5d88d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Likelihood Functions</topic><topic>maximum likelihood estimation</topic><topic>Optical properties</topic><topic>Reconstruction</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tomography</topic><topic>Tomography, Optical - methods</topic><topic>Transducers</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>ultrasound modulated optical tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huynh, Nam T</creatorcontrib><creatorcontrib>He, Diwei</creatorcontrib><creatorcontrib>Hayes-Gill, Barrie R</creatorcontrib><creatorcontrib>Crowe, John A</creatorcontrib><creatorcontrib>Walker, John G</creatorcontrib><creatorcontrib>Mather, Melissa L</creatorcontrib><creatorcontrib>Rose, Felicity R. A. J</creatorcontrib><creatorcontrib>Parker, Nicholas G</creatorcontrib><creatorcontrib>Povey, Malcolm J. W</creatorcontrib><creatorcontrib>Morgan, Stephen P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huynh, Nam T</au><au>He, Diwei</au><au>Hayes-Gill, Barrie R</au><au>Crowe, John A</au><au>Walker, John G</au><au>Mather, Melissa L</au><au>Rose, Felicity R. A. J</au><au>Parker, Nicholas G</au><au>Povey, Malcolm J. W</au><au>Morgan, Stephen P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a maximum likelihood algorithm to ultrasound modulated optical tomography</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>17</volume><issue>2</issue><spage>026014</spage><epage>0260112</epage><pages>026014-0260112</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensional image along the US axis. A simple model is developed wherein the detected signal is modelled as a convolution of the US pulse and the properties (ultrasonic/optical) of the medium along the US axis. Based upon this model, a maximum likelihood (ML) method for image reconstruction is established. For the first time to our knowledge, the ML technique for an USMOT signal is investigated both theoretically and experimentally. The ML method inverts the data to retrieve the spatially varying properties of the sample along the US axis, and a signal proportional to the optical properties can be acquired. Simulated results show that the ML method can serve as a useful reconstruction tool for a pulsed USMOT signal even when the signal-to-noise ratio (SNR) is close to unity. Experimental data using 5 cm thick tissue phantoms (scattering coefficient
, anisotropy factor
) demonstrate that the axial resolution is 160
m and the lateral resolution is 600
m using a 10 MHz transducer.</abstract><cop>United States</cop><pmid>22463046</pmid><doi>10.1117/1.JBO.17.2.026014</doi><tpages>234099</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-3668 |
ispartof | Journal of Biomedical Optics, 2012-02, Vol.17 (2), p.026014-0260112 |
issn | 1083-3668 1560-2281 |
language | eng |
recordid | cdi_pubmed_primary_22463046 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Anisotropy Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Likelihood Functions maximum likelihood estimation Optical properties Reconstruction Reproducibility of Results Sensitivity and Specificity Tomography Tomography, Optical - methods Transducers Ultrasonography - methods Ultrasound ultrasound modulated optical tomography |
title | Application of a maximum likelihood algorithm to ultrasound modulated optical tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20maximum%20likelihood%20algorithm%20to%20ultrasound%20modulated%20optical%20tomography&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Huynh,%20Nam%20T&rft.date=2012-02-01&rft.volume=17&rft.issue=2&rft.spage=026014&rft.epage=0260112&rft.pages=026014-0260112&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.JBO.17.2.026014&rft_dat=%3Cproquest_pubme%3E1671630728%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541407927&rft_id=info:pmid/22463046&rfr_iscdi=true |