Application of a maximum likelihood algorithm to ultrasound modulated optical tomography

In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Biomedical Optics 2012-02, Vol.17 (2), p.026014-0260112
Hauptverfasser: Huynh, Nam T, He, Diwei, Hayes-Gill, Barrie R, Crowe, John A, Walker, John G, Mather, Melissa L, Rose, Felicity R. A. J, Parker, Nicholas G, Povey, Malcolm J. W, Morgan, Stephen P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 0260112
container_issue 2
container_start_page 026014
container_title Journal of Biomedical Optics
container_volume 17
creator Huynh, Nam T
He, Diwei
Hayes-Gill, Barrie R
Crowe, John A
Walker, John G
Mather, Melissa L
Rose, Felicity R. A. J
Parker, Nicholas G
Povey, Malcolm J. W
Morgan, Stephen P
description In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensional image along the US axis. A simple model is developed wherein the detected signal is modelled as a convolution of the US pulse and the properties (ultrasonic/optical) of the medium along the US axis. Based upon this model, a maximum likelihood (ML) method for image reconstruction is established. For the first time to our knowledge, the ML technique for an USMOT signal is investigated both theoretically and experimentally. The ML method inverts the data to retrieve the spatially varying properties of the sample along the US axis, and a signal proportional to the optical properties can be acquired. Simulated results show that the ML method can serve as a useful reconstruction tool for a pulsed USMOT signal even when the signal-to-noise ratio (SNR) is close to unity. Experimental data using 5 cm thick tissue phantoms (scattering coefficient , anisotropy factor ) demonstrate that the axial resolution is 160 m and the lateral resolution is 600 m using a 10 MHz transducer.
doi_str_mv 10.1117/1.JBO.17.2.026014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22463046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671630728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4910779e6c10be948fed35b3252f58e9ac701be49157632dc840c92d1e5d88d93</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EoqXwAGyQd7BJmLET_yxL1fKjSpcFSOws39jpNdjXIU4k-va4pHSJ2NhHmm--xRxCXiK0iCjfYvvp3a5F2bIWmADsHpFT7AU0jCl8XDMo3nAh1Al5Vsp3AFBCi6fkhLFOcOjEKfl2Pk0xDHYJ-UjzSC1N9ldIa6Ix_PAxHHJ21MabPIflkOiS6RqX2Za8Hh1N2a3RLt7RPC1VEus85ZvZTofb5-TJaGPxL-7_M_L16vLLxYfmevf-48X5dTN0PVuaTiNIqb0YEPZed2r0jvd7zno29sprO0jAva9YLwVnblAdDJo59L1Tyml-Rl5v3mnOP1dfFpNCGXyM9ujzWowWXHEAoSr55p8kCon1KpL9B9p32IHUTFYUN3SYcymzH800h2TnW4Ng7loyaGpLpgZmtpbqzqt7_bpP3j1s_K2lAmwDyhT8w7hqPl_taouA8u4Ftvn-ZOS_AfuhmvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541407927</pqid></control><display><type>article</type><title>Application of a maximum likelihood algorithm to ultrasound modulated optical tomography</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Huynh, Nam T ; He, Diwei ; Hayes-Gill, Barrie R ; Crowe, John A ; Walker, John G ; Mather, Melissa L ; Rose, Felicity R. A. J ; Parker, Nicholas G ; Povey, Malcolm J. W ; Morgan, Stephen P</creator><creatorcontrib>Huynh, Nam T ; He, Diwei ; Hayes-Gill, Barrie R ; Crowe, John A ; Walker, John G ; Mather, Melissa L ; Rose, Felicity R. A. J ; Parker, Nicholas G ; Povey, Malcolm J. W ; Morgan, Stephen P</creatorcontrib><description>In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensional image along the US axis. A simple model is developed wherein the detected signal is modelled as a convolution of the US pulse and the properties (ultrasonic/optical) of the medium along the US axis. Based upon this model, a maximum likelihood (ML) method for image reconstruction is established. For the first time to our knowledge, the ML technique for an USMOT signal is investigated both theoretically and experimentally. The ML method inverts the data to retrieve the spatially varying properties of the sample along the US axis, and a signal proportional to the optical properties can be acquired. Simulated results show that the ML method can serve as a useful reconstruction tool for a pulsed USMOT signal even when the signal-to-noise ratio (SNR) is close to unity. Experimental data using 5 cm thick tissue phantoms (scattering coefficient , anisotropy factor ) demonstrate that the axial resolution is 160 m and the lateral resolution is 600 m using a 10 MHz transducer.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.17.2.026014</identifier><identifier>PMID: 22463046</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Anisotropy ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Likelihood Functions ; maximum likelihood estimation ; Optical properties ; Reconstruction ; Reproducibility of Results ; Sensitivity and Specificity ; Tomography ; Tomography, Optical - methods ; Transducers ; Ultrasonography - methods ; Ultrasound ; ultrasound modulated optical tomography</subject><ispartof>Journal of Biomedical Optics, 2012-02, Vol.17 (2), p.026014-0260112</ispartof><rights>2012 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4910779e6c10be948fed35b3252f58e9ac701be49157632dc840c92d1e5d88d93</citedby><cites>FETCH-LOGICAL-c452t-4910779e6c10be948fed35b3252f58e9ac701be49157632dc840c92d1e5d88d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22463046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huynh, Nam T</creatorcontrib><creatorcontrib>He, Diwei</creatorcontrib><creatorcontrib>Hayes-Gill, Barrie R</creatorcontrib><creatorcontrib>Crowe, John A</creatorcontrib><creatorcontrib>Walker, John G</creatorcontrib><creatorcontrib>Mather, Melissa L</creatorcontrib><creatorcontrib>Rose, Felicity R. A. J</creatorcontrib><creatorcontrib>Parker, Nicholas G</creatorcontrib><creatorcontrib>Povey, Malcolm J. W</creatorcontrib><creatorcontrib>Morgan, Stephen P</creatorcontrib><title>Application of a maximum likelihood algorithm to ultrasound modulated optical tomography</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensional image along the US axis. A simple model is developed wherein the detected signal is modelled as a convolution of the US pulse and the properties (ultrasonic/optical) of the medium along the US axis. Based upon this model, a maximum likelihood (ML) method for image reconstruction is established. For the first time to our knowledge, the ML technique for an USMOT signal is investigated both theoretically and experimentally. The ML method inverts the data to retrieve the spatially varying properties of the sample along the US axis, and a signal proportional to the optical properties can be acquired. Simulated results show that the ML method can serve as a useful reconstruction tool for a pulsed USMOT signal even when the signal-to-noise ratio (SNR) is close to unity. Experimental data using 5 cm thick tissue phantoms (scattering coefficient , anisotropy factor ) demonstrate that the axial resolution is 160 m and the lateral resolution is 600 m using a 10 MHz transducer.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Likelihood Functions</subject><subject>maximum likelihood estimation</subject><subject>Optical properties</subject><subject>Reconstruction</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tomography</subject><subject>Tomography, Optical - methods</subject><subject>Transducers</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>ultrasound modulated optical tomography</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhS0EoqXwAGyQd7BJmLET_yxL1fKjSpcFSOws39jpNdjXIU4k-va4pHSJ2NhHmm--xRxCXiK0iCjfYvvp3a5F2bIWmADsHpFT7AU0jCl8XDMo3nAh1Al5Vsp3AFBCi6fkhLFOcOjEKfl2Pk0xDHYJ-UjzSC1N9ldIa6Ix_PAxHHJ21MabPIflkOiS6RqX2Za8Hh1N2a3RLt7RPC1VEus85ZvZTofb5-TJaGPxL-7_M_L16vLLxYfmevf-48X5dTN0PVuaTiNIqb0YEPZed2r0jvd7zno29sprO0jAva9YLwVnblAdDJo59L1Tyml-Rl5v3mnOP1dfFpNCGXyM9ujzWowWXHEAoSr55p8kCon1KpL9B9p32IHUTFYUN3SYcymzH800h2TnW4Ng7loyaGpLpgZmtpbqzqt7_bpP3j1s_K2lAmwDyhT8w7hqPl_taouA8u4Ftvn-ZOS_AfuhmvE</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Huynh, Nam T</creator><creator>He, Diwei</creator><creator>Hayes-Gill, Barrie R</creator><creator>Crowe, John A</creator><creator>Walker, John G</creator><creator>Mather, Melissa L</creator><creator>Rose, Felicity R. A. J</creator><creator>Parker, Nicholas G</creator><creator>Povey, Malcolm J. W</creator><creator>Morgan, Stephen P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Application of a maximum likelihood algorithm to ultrasound modulated optical tomography</title><author>Huynh, Nam T ; He, Diwei ; Hayes-Gill, Barrie R ; Crowe, John A ; Walker, John G ; Mather, Melissa L ; Rose, Felicity R. A. J ; Parker, Nicholas G ; Povey, Malcolm J. W ; Morgan, Stephen P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4910779e6c10be948fed35b3252f58e9ac701be49157632dc840c92d1e5d88d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Likelihood Functions</topic><topic>maximum likelihood estimation</topic><topic>Optical properties</topic><topic>Reconstruction</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tomography</topic><topic>Tomography, Optical - methods</topic><topic>Transducers</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>ultrasound modulated optical tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huynh, Nam T</creatorcontrib><creatorcontrib>He, Diwei</creatorcontrib><creatorcontrib>Hayes-Gill, Barrie R</creatorcontrib><creatorcontrib>Crowe, John A</creatorcontrib><creatorcontrib>Walker, John G</creatorcontrib><creatorcontrib>Mather, Melissa L</creatorcontrib><creatorcontrib>Rose, Felicity R. A. J</creatorcontrib><creatorcontrib>Parker, Nicholas G</creatorcontrib><creatorcontrib>Povey, Malcolm J. W</creatorcontrib><creatorcontrib>Morgan, Stephen P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huynh, Nam T</au><au>He, Diwei</au><au>Hayes-Gill, Barrie R</au><au>Crowe, John A</au><au>Walker, John G</au><au>Mather, Melissa L</au><au>Rose, Felicity R. A. J</au><au>Parker, Nicholas G</au><au>Povey, Malcolm J. W</au><au>Morgan, Stephen P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a maximum likelihood algorithm to ultrasound modulated optical tomography</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>17</volume><issue>2</issue><spage>026014</spage><epage>0260112</epage><pages>026014-0260112</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>In pulsed ultrasound modulated optical tomography (USMOT), an ultrasound (US) pulse performs as a scanning probe within the sample as it propagates, modulating the scattered light spatially distributed along its propagation axis. Detecting and processing the modulated signal can provide a 1-dimensional image along the US axis. A simple model is developed wherein the detected signal is modelled as a convolution of the US pulse and the properties (ultrasonic/optical) of the medium along the US axis. Based upon this model, a maximum likelihood (ML) method for image reconstruction is established. For the first time to our knowledge, the ML technique for an USMOT signal is investigated both theoretically and experimentally. The ML method inverts the data to retrieve the spatially varying properties of the sample along the US axis, and a signal proportional to the optical properties can be acquired. Simulated results show that the ML method can serve as a useful reconstruction tool for a pulsed USMOT signal even when the signal-to-noise ratio (SNR) is close to unity. Experimental data using 5 cm thick tissue phantoms (scattering coefficient , anisotropy factor ) demonstrate that the axial resolution is 160 m and the lateral resolution is 600 m using a 10 MHz transducer.</abstract><cop>United States</cop><pmid>22463046</pmid><doi>10.1117/1.JBO.17.2.026014</doi><tpages>234099</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of Biomedical Optics, 2012-02, Vol.17 (2), p.026014-0260112
issn 1083-3668
1560-2281
language eng
recordid cdi_pubmed_primary_22463046
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Anisotropy
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Likelihood Functions
maximum likelihood estimation
Optical properties
Reconstruction
Reproducibility of Results
Sensitivity and Specificity
Tomography
Tomography, Optical - methods
Transducers
Ultrasonography - methods
Ultrasound
ultrasound modulated optical tomography
title Application of a maximum likelihood algorithm to ultrasound modulated optical tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20maximum%20likelihood%20algorithm%20to%20ultrasound%20modulated%20optical%20tomography&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Huynh,%20Nam%20T&rft.date=2012-02-01&rft.volume=17&rft.issue=2&rft.spage=026014&rft.epage=0260112&rft.pages=026014-0260112&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.JBO.17.2.026014&rft_dat=%3Cproquest_pubme%3E1671630728%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541407927&rft_id=info:pmid/22463046&rfr_iscdi=true